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Preface

My Design in this Book is not to explain the Properties of Light by Hypothesis, but to propose and

prove them by Reason and Experiments; In order to which I shall premise the following Definitions

and Axioms.

The opening sentence of Newton’s Opticks, 1717

Nature and Nature’s laws lay hid in night: God said, Let Newton be! and all was light.

Alexander Pope, 1688–1744.

Teaching and research in modern optics must encompass the ray approach of geometric optics, the

wave approach of diffraction and interferometry, and the quantum physics of the interaction of light

and matter. Optics and Photonics, by Smith and King (2000), was designed to span this wide range,

providing material for a two-year undergraduate course and some extension into postgraduate

research. The text has been adopted for course teaching at the University of Omaha, Nebraska, by

our third author, Dan Wilkins, and he has contributed many improvements that have proved to be

essential for a rigorous undergraduate course. The material has been rearranged to give a more logical

presentation and new subject matter has been added. The text has been completely revised, many of

the figures have been redrawn, and new examples have been added.

The dominant factor in the recent development of optics has been the discovery and development

of many forms of lasers. The remarkable properties of laser radiation have led to a wealth of new

techniques such as non-linear optics, atom trapping and cooling, femtosecond dynamics and electro-

optics. The laser has led to a deeper understanding of light involving coherence and quantum optics,

and it has provided new optical coherence techniques which have made a major impact in atomic

physics. Not only physics but also chemistry, biology, engineering and medicine have been enhanced

by the use of laser-based methods, There is now a wonderful range of new applications such as

holography, optical communications, picosecond and femtosecond probes, optoelectronics, medical

imaging and optical coherence tomography. Myriad applications have become prominent in industry

and everyday life.

A modern optics course must now place equal emphasis on the traditional optics, dealing with

geometric and wave aspects of light, and on the physics of the recent developments, usually classified

as photonics. The approach in this book is to emphasize the basic concepts with the objective of

developing student understanding. Mathematical content is sufficient to aid the physics description

but without undue complication. Extensive sets of problems are included, devised to develop



understanding and provide experience in the use of the equations as well as being thought provoking.

Some worked examples are in the text, and short solutions to selected problems are given at the end of

the book. Notes and full solutions for all problems are posted on a website.

We now present the book as an introduction to the essential elements of optics and photonics, suitable

for a one- or two-semester lecture course and including an exposition of key modern developments. We

suggest that a first course, constituting minimal core material for the subject, might comprise:

� Chapter 1 Light as waves, rays, and photons.

� Chapter 2 Geometric optics, Sections 2.1–2.7.

� Chapter 4 Periodic and non-periodic waves.

� Chapter 5 Electromagnetic waves.

� Chapter 6 Fibre optics, Sections 6.1–6.8.

� Chapter 7 Polarization.

� Chapter 8 Interference by division of amplitude, Sections 8.1–8.2.

� Chapter 12 Spectra and spectrometers.

� Chapter 15 Lasers.

Selection of further material would then depend on the intended scope of the course and its duration;

for example, if time permits, we recommend these additional chapters:

� Chapter 9 Interferometry.

� Chapter 10 Diffraction, Sections 10.1–10.3.

� Chapter 11 The diffraction grating.

� Chapter 14 Holography.

Communications engineers would want to include:

� Chapter 13 Coherence and correlation.

� Chapter 16 Laser light.

� Chapter 17 Semiconductors and semiconductor lasers.

� Chapter 20 The detection of light.

Those in the biosciences could well choose the following:

� Chapter 19 Interaction of light with matter.

� Chapter 20 The detection of light.

� Chapter 21 Optics and photonics in nature.

We welcome suggestions from lecturers on such course structures; we may be contacted c/o Celia

Carden, Development Editor at John Wiley & Sons Ltd, email: ccarden@wiley.co.uk.
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1 Light as Waves, Rays and Photons

Are not the rays of light very small bodies emitted from shining substances?

Isaac Newton, Opticks

All these 50 years of conscious brooding have brought me no nearer to the answer to the question ‘What are light

quanta?’. Nowadays every Tom, Dick and Harry thinks he knows it, but he is mistaken.

Albert Einstein, A Centenary Volume, 1951.

How wonderful that we have met with a paradox. Now we have some chance of making progress.

Niels Bohr (quoted by L.I. Ponomarev in The Quantum Dice).

Light is an electromagnetic wave: light is emitted and absorbed as a stream of discrete photons,

carrying packets of energy and momentum. How can these two statements be reconciled? Similarly,

while light is a wave, it nevertheless travels along straight lines or rays, allowing us to analyse lenses

and mirrors in terms of geometric optics. Can we use these descriptions of waves, rays and photons

interchangeably, and how should we choose between them? These problems, and their solutions,

recur throughout this book, and it is useful to start by recalling how they have been approached as the

theory of light has evolved over the last three centuries.

1.1 The Nature of Light

In his famous book Opticks, published in 1704, Isaac Newton described light as a stream of particles

or corpuscles. This satisfactorily explained rectilinear propagation, and allowed him to develop

theories of reflection and refraction, including his experimental demonstration of the splitting of

sunlight into a spectrum of colours by using a prism. The particles in rays of different colours were

supposed to have different qualities, possibly of mass, or size or velocity. White light was made up of

a compound of coloured rays, and the colours of transparent materials were due to selective

absorption. It was, however, more difficult for him to explain the coloured interference patterns in

thin films, which we now call Newton’s rings (see Chapter 9). For this, and for the partial reflection of

light at a glass surface, he suggested a kind of periodic motion induced by his corpuscles, which

reacted on the particles to give ‘fits of easy reflection and transmission’. Newton also realized that

double refraction in a calcite crystal (Iceland spar) was best explained by attributing a rectangular

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



cross-section (or ‘sides’) to light rays, which we would now describe as polarization (Chapter 7). He

nevertheless argued vehemently against an actual wave theory, on the grounds that waves would

spread in angle rather than travel as rays, and that there was no medium to carry light waves from

distant celestial bodies.

The idea that light was propagated as some sort of wave was published by René Descartes in

La Dioptrique (1637); he thought of it as a pressure wave in an elastic medium. Christiaan Huygens, a

Dutch contemporary of Newton, developed the wave theory; his explanation of rectilinear propaga-

tion is now known as ‘Huygens’ construction’. He correctly explained refraction in terms of a lower

velocity in a denser medium. Huygens’ construction is still a useful concept, and we use it later in this

chapter.

It was not, however, until 100 years after Newton’s Opticks that the wave theory was firmly

established and the wavelength of light was found to be small enough to explain rectilinear

propagation. In Thomas Young’s double slit experiment (see Chapter 8), monochromatic light

from a small source passed through two separate slits in an opaque screen, creating interference

fringes where the two beams overlapped; this effect could only be explained in terms of waves.

Augustin Fresnel, in 1821, then showed that the wave must be a transverse oscillation, as contrasted

with the longitudinal oscillation of a sound wave; following Newton’s ideas of rays with ‘sides’,

this was required by the observed polarization of light as in double refraction. Fresnel also

developed the theories of partial reflection and transmission (Chapter 5), and of diffraction at

shadow edges (Chapter 10). The final vindication of the wave theory came with James Clerk

Maxwell, who synthesized the basic physics of electricity and magnetism into the four Maxwell

equations, and deduced that an electromagnetic wave would propagate at a speed which equalled that

of light.

The end of the nineteenth century therefore saw the wave theory on an apparently unassailable

foundation. Difficulties only remained with understanding the interaction of light with matter, and in

particular the ‘blackbody spectrum’ of thermal radiation. This was, however, the point at which the

corpuscular theory came back to life. In 1900 Max Planck showed that the form of the blackbody

spectrum could be explained by postulating that the walls of the body containing the radiation

consisted of harmonic oscillators with a range of frequencies, and that the energies of those with

frequency n were restricted to integral multiples of the quantity hn. Each oscillator therefore had a

fundamental energy quantum

E ¼ hn ð1:1Þ

where h became known as Planck’s constant. In 1905 Albert Einstein explained the photoelectric

effect by postulating that electromagnetic radiation was itself quantized, so that electrons are emitted

from a metal surface when radiation is absorbed in discrete quanta. It seemed that Newton was right

after all! Light was again to be understood as a stream of particles, later to become known as photons.

What had actually been shown, however, was that light energy and the momentum carried by a light

wave existed in discrete units, or quanta; photons should be thought of as events at which these quanta

are emitted or absorbed.

If light is a wave that has properties usually associated with particles, could material particles

correspondingly have wave-like properties? This was proposed by Louis de Broglie in 1924, and

confirmed experimentally three years later in two classical experiments by George Thomson and by

Clinton Davisson and Lester Germer. Both showed that a beam of particles, like a light ray

encountering an obstacle, could be diffracted, behaving as a wave rather than a geometric ray. The

diffraction pattern formed by the spreading of an electron beam passing through a hole in a metal

2 Chapter 1: Light as Waves, Rays and Photons



sheet, for example, was the same as the diffraction pattern in light which we explore in Chapter 10.

Furthermore, the wavelength l involved was simply related to the momentum p of the electrons by

l ¼ h

p
: ð1:2Þ

The constant h was again Planck’s constant, as in the theory of quanta in electromagnetic radiation;

for material waves l is the de Broglie wavelength. A general wave theory of the behaviour of matter,

wave mechanics, was developed in 1926 by Erwin Schrödinger following de Broglie’s ideas. Wave

mechanics revolutionized our understanding of how microscopic particles were described and placed

limitations on the extent of information one could have about such systems – the famous Heisenberg

uncertainty relationship.

The behaviour of both matter and light evidently has dual aspects: they are in some sense both

particles and waves. Which aspect best describes their behaviour depends on the circumstances; light

propagates, diffracts and interferes as a wave, but is emitted and absorbed discontinuously as photons,

which are discrete packets of energy and momentum. Photons do not have a continuous existence, as

does for example an electron in the beam of an accelerator machine; in contrast with a material

particle it is not possible to say where an individual photon is located within a light beam. In some

contexts we nevertheless think of the light within some experimental apparatus, such as a cavity or a

laser, as consisting of photons, and we must then beware of following Newton and being misled by

thinking of photons as particles with properties like those of material particles.

Although photons and electrons have very similar wave-like characteristics, there are several

fundamental differences in their behaviour. Photons have zero mass; the momentum p of a photon in

equation (1.1) is related to its kinetic energy E by E ¼ pc, as compared with E ¼ p2=2m for particles

moving well below light speed. Unlike electrons, photons are not conserved and can be created or

destroyed in encounters with material particles. Again, their statistical behaviour is different in

situations where many photons or electrons can interact, as for example the photons in a laser or

electrons in a metal. No two electrons in such a system can be in exactly the same state, while there is

no such restriction for photons: this is the difference between Fermi–Dirac and Bose–Einstein

statistics respectively for electrons and for photons.

In the first two-thirds of this bookwe shall be able to treat lightmainly as awave phenomenon, returning

to the concept of photons when we consider the absorption and emission of electromagnetic waves.

1.2 Waves and Rays

We now return to the question: how can light be represented by a ray? Huygens’ solution was to

postulate that light is propagated as a wavefront, and that at any instant every point on the wavefront is

the source of a wavelet, a secondary wave which propagates outward as a spherical wave (Figure 1.1)

Each wavelet has infinitesimal amplitude, but on the common envelope where countless wavelets

intersect, they reinforce each other to form a new wavefront of finite amplitude. In this way,

successive positions of the wavefront can be found by a step-by-step process. The envelope1 of the

1To define the envelope evolved after a short time from a wavefront segment, take a finite number N of

wavelets with evenly spaced centres, and note the intersection points between adjacent wavelets. In the limit that

N goes to infinity, the intersection points crowd together and constitute the envelope, which is the new wavefront.

1.2 Waves and Rays 3



wavelets is perpendicular to the radius of each wavelet, so that the ray is the normal to a wavefront.

This simple Huygens wavefront concept allows us to understand both the rectilinear propagation of

light along ray paths and the basic geometric laws of reflection and refraction. There are obvious

limitations: for example, what happens at the edge of a portion of the wavefront, as in Figure 1.1, and

why is there no wave reradiated backwards? We return to these questions when we consider

diffraction theory in Chapter 10.

Reflection of a plane wavefront W1 reaching a totally reflecting surface is understood according to

Huygens in terms of secondary wavelets set up successively along the surface as the wavefront

reaches it (Figure 1.2(a)). These secondary wavelets propagate outwards and combine to form the

reflected wavefront W2. The rays are normal to the incident and reflected wavefronts. Light has

travelled along each ray from W1 to W2 in the same time, so all path lengths from W1 to W2 via the

mirror must be equal. The basic law of reflection follows: the incident and reflected rays lie in the

same plane and the angles of incidence (i) and reflection (r) are equal.

Figure 1.2(b) shows the same reflection in terms of rays. Here we may find the same law of

reflection as an example of Fermat’s principle of least time, which states that the time of propagation

is a minimum (or more strictly either a maximum or a minimum) along a ray path.2 It is easy to see

that the path of a light ray between the two points A and B (Figure 1.2 (b)) is a minimum if the angles

i; r are equal. The proof is simple: construct the mirror image A0 of A in the reflecting surface, when

the line A0B must be straight for a minimum distance. Any other path AP0B is longer.

P r

W

W /

Figure 1.1 Huygens’ secondary wavelets. A spherical wavefront W has originated at P and after a time t has a
radius R ¼ ct, where c is the speed of light. Huygens’ secondary wavelets originating on W at time t combine to
form a new wavefront W 0 at time t0, when the radii of the wavelets are cðt0 � tÞ

2This explanation of the basic law of reflection was first given by Hero of Alexandria (First century AD).
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Why are these two approaches essentially the same? Fermat tells us that the time of travel is the same

along all paths close to an actual ray. In terms of waves this means that waves along these paths all

arrive together, and reinforce one another as in Huygens’ construction. When we consider periodic

waves, we will express this by saying that they are in phase.

ir

W W2
1

(a)

Figure 1.2 Reflection at a plane surface. (a) Huygens wave construction. The reflected wave W2 is made up of
wavelets generated as successive points on the incident plane wave W1 reach the surface. (b) Fermat’s principle.
The law of reflection is found by making the path of a reflected light ray between the points A and B a minimum

1.2 Waves and Rays 5



The basic law of refraction (Snell’s law) may be found by applying either Huygens’ or Fermat’s

principles to a boundary between two media in which the velocities of propagation v1; v2 are

different; as Huygens realized, his secondary waves must travel more slowly in an optically denser

medium. The refractive indices are defined as n1 ¼ c=v1; n2 ¼ c=v2 where c is the velocity of light in

free space. As we now show, the Fermat approach shown in Figure 1.3 leads to Snell’s law via some

simple trigonometry.

The Fermat condition is that the travel time (n1APþ n2PB)c is stationary (minimum, maximum, or

point of inflection); this means that for any small change in the light path of order E, the change in

travel time vanishes as E2 (or even faster). The distance n1APþn2PB is called the optical path. We

consider a small virtual displacement of the light rays from APB to AP0B. Denote the length PP0 as E.
By dropping perpendiculars from P and P0, we create two thin triangles AP0Q and BPR that become

perfect isosceles triangles in the limit of zero displacement. Fermat requires then that the change of

the optical path satisfies3

n1QP� n2P
0R ¼ n1E sin y1 � n2E sin y2 ¼ OðE2Þ: ð1:3Þ

Dividing by E, and going to the limit E ¼ 0, this leads directly to Snell’s law of refraction:

n1 sin y1 ¼ n2 sin y2: ð1:4Þ

Notice that this derivation works for a smoothly curving surface of any shape.

In Chapter 5 we show how the laws of reflection and refraction may be derived from electro-

magnetic wave theory.

Figure 1.3 Refraction at a surface between transparent media with refractive indices n1 and n2. We assume the
light rays and the surface normal all lie in the plane of the paper. Snell’s law corresponds to a stationary value of
the optical path n1AP þ n2PB between the fixed endpoints A, B; for small virtual variations such as shifting the
point P to P0, the optical path changes negligibly

3The notation O(E2) designates a quantity that varies as E2 in the limit of vanishing epsilon.
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1.3 Total Internal Reflection

Referring again to Figure 1.3, and noting that the geometry is the same if the ray direction is reversed,

we consider what happens if a ray inside the refracting medium meets the surface at a large angle of

incidence y2, so that sin y2 is greater than n1=n2 and equation (1.4) would give sin y1 > 1. There can

then be no ray above the surface, and there is total internal reflection. The internally reflected ray is at

the same angle of incidence to the normal as the incident ray.

The phenomenon of total internal reflection is put to good use in the light pipe (Figure 1.4), in

which light entering the end of a glass cylinder is reflected repeatedly and eventually emerges at the

far end. The same principle is applicable to the transmission of light down thin optical fibres, but here

the relation of the wavelength of light to the fibre diameter must be taken into account (Chapter 6).

1.4 The Light Wave

We now consider in more detail the description of the light wave, starting with a simple expression for

a plane wave of any quantity c, travelling in the positive direction z with velocity v:

c ¼ f ðz � vtÞ: ð1:5Þ

The function f ðzÞ describes the shape of c at the moment t ¼ 0, and the equation states that the shape

of c is unchanged at any later time t, with only a movement of the origin by a distance vt along the z

axis (Figure 1.5). The minus sign in ðz � vtÞ indicates motion in the þz direction; a plus sign

would correspond to motion in the �z direction. The variable quantity c may be a scalar, e.g. the

pressure in a sound wave, or it may be a vector. If it is a vector, it may be transverse, i.e.

i

r

Figure 1.4 The light pipe. Rays entering at one end are totally internally reflected, and can be conducted along
long paths which may include gentle curves

Figure 1.5 A wave travelling in the z direction with unchanging shape and with velocity v. At time t ¼ 0 the
waveform is c ¼ f ðzÞ, and at time t it is c ¼ f ðz� vtÞ
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perpendicular to the direction of propagation, as are the waves in a stretched string, or the electric

and magnetic fields in the electromagnetic waves which are our main concern. (These are the

‘sides’ which Newton attributed to his rays.) For most of optics it is sufficient to consider only the

transverse electric field; indeed, as we shall see later, the results of scalar wave theory are sufficiently

general that for many purposes we may just think of the magnitude of the electric field and forget

about its vector nature.

At any one time the variation of c with z, i.e. the slope of the graph in Figure, 1.5, is @c=@z, and at

any one place the rate of change of c is @c=@t. Changing to the variable z0 ¼ ðz � vtÞ and using the

chain rule for partial differentiation:

@c
@z

¼ @c
@z0

@z0

@z
¼ @c

@z0
ð1:6Þ

@c
@t

¼ @c
@z0

@z0

@t
¼ �v

@c
@z0

: ð1:7Þ

Similarly, the second differential of c with respect to z, i.e. @2c=@z2, which is the curvature of

the graph in Figure 1.5, is related to the second differential with respect to time, i.e. the acceleration

of c, by

@2c
@t2

¼ v2
@2c
@z2

: ð1:8Þ

This so-called one-dimensional wave equation applies to any wave propagating in the z direction with

uniform velocity and without change of form.

The wave equation (1.8) may be extended to three dimensions, giving

@2c
@x2

þ @2c
@y2

þ @2c
@z2

¼ 1

v2
@2c
@t2

ð1:9Þ

or in a more general and concise notation4

r2c ¼ 1

v2
@2c
@t2

: ð1:10Þ

The form of the wave f ðz � vtÞ may be any continuous function, but it is convenient to analyse such

behaviour in terms of harmonic waves, taking the simple form of a sine or cosine. (In Chapter 4 we

show that any continuous function can be synthesized from the superposition of harmonic waves.) At

any point such a wave varies sinusoidally with time t, and at any time the wave varies sinusoidally

with distance z. The waveform is seen in Figure 1.6, which introduces the wavelength l and period t.
At any point there is an oscillation with amplitude A. Equation (1.5) then becomes

c ¼ A sin 2p
z

l
� t

t

� �h i
; ð1:11Þ

4Recall that r2 is the Laplacian operator: r2 ¼ @2=@x2 þ @2=@y2 þ @2=@z2:
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which is easily demonstrated to be a solution of the general wave equation (1.8) provided l=t ¼ v.
The frequency of oscillation is n ¼ 1=t. It is often convenient to use an angular frequency o ¼ 2pn,
and a propagation constant or wave number5 k ¼ 2p=l. Equation (1.11) may then be written in terms

of k as

c ¼ A sinðkz � otÞ: ð1:12Þ

The vector quantity k ¼ ð2p=lÞk̂, where k̂ is the unit vector in the direction of k, is also termed the

wave vector.

Another powerful way of writing harmonic plane wave solutions of Equation (1.10) is in terms of

complex exponentials

c ¼ A exp½iðkz � otÞ�: ð1:13Þ

Due to several elegant mathematical properties, including ease of differentiation and of visualization,

complex functions like this can vastly simplify the process of combining waves of different

amplitudes and phases, as we shall see in Chapter 4.

Velocity v

Distance

λ

(a)

A

y

Figure 1.6 A progressive sine wave: (a) the wave at a fixed time; (b) the oscillation at a fixed point P

5Beware: the term wave number is also used in spectroscopy for 1=l, without the factor 2p.
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1.5 Electromagnetic Waves

Although the idea that light was propagated as a combination of electric and magnetic fields was

developed qualitatively by Michael Faraday, it required a mathematical formulation by Maxwell

before the process could be clearly understood. In Chapter 5 we derive the electromagnetic wave

equation from Maxwell’s equations, and show that all electromagnetic waves travel with the same

velocity in free space. There are two variables in an electromagnetic wave, the electric and magnetic

fields E and B; both are vector quantities, but each can be represented by the variable c in the wave

equation (1.10). As shown in Chapter 5, they are both transverse to the direction of propagation, and

mutually perpendicular. Their magnitudes6 are related by

E ¼ vB ð1:14Þ

where v is the velocity of light in the medium. Since the electric and magnetic fields are mutually

perpendicular and their magnitudes are in a fixed ratio, only one need be specified, and the magnitude

and direction of the other follow. Equation (1.14) is true in general, but note that the velocity v in a

dielectric such as glass is less than the free space velocity c; the refractive index n of the medium is

n ¼ c

v
: ð1:15Þ

As Huygens realized, light travels more slowly in dense media than in a vacuum.

In a transverse wave moving along a direction z the variable quantity is a vector which may be in

any direction in the orthogonal plane x; y. The relevant variable for electromagnetic waves is

conventionally chosen as the electric field E. The polarization of the wave is the description of the

behaviour of the vector E in the plane x; y. The plane of polarization is defined as the plane containing
the electric field vector and the ray, i.e. the z axis. If the vector E remains in a fixed direction, the wave

is linearly or plane polarized; if the direction changes randomly with time, the wave is randomly

polarized, or unpolarized. The vector E can also rotate uniformly at the wave frequency, as observed

at a fixed point on the ray; the polarization is then circular, either right- or left-handed, depending on

the direction of rotation.

Polarization plays an important part in the interaction of electromagnetic waves with matter, and

Chapter 7 is devoted to a more detailed analysis.

1.6 The Electromagnetic Spectrum

The wavelength range of visible light covers about one octave of the electromagnetic spectrum,

approximately from 400 to 800 nm (1 nanometre ¼ 10�9 m). The electromagnetic spectrum covers a

vast range, stretching many decades through infrared light to radio waves and many more decades

through ultraviolet light and X-rays to gamma rays (Figure 1.7). The differences in behaviour across

the electromagnetic spectrum are very large. Frequencies (n) and wavelengths (l) are related to the

velocity of light (c) by ln ¼ c. The frequencies vary from 104 Hz for long radio waves (1 hertz equals

6We use the SI system of electromagnetic units throughout.
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one cycle per second), to more than 1021 Hz for commonly encountered gamma rays; the highest

energy cosmic gamma rays so far detected reach to 1035 Hz (4� 1020 eV). It is unusual to encounter a

quantum process in the radio frequency spectrum, and even more unusual to hear a physicist refer to

the frequency of a gamma ray, instead of the energy and the momentum carried by a gamma ray

photon.

Although wave aspects dominate the behaviour of the longest wavelengths, and photon aspects

dominate the behaviour of short-wavelength X-rays and gamma rays, the whole range is governed by

the same basic laws. It is in the optical range (waves in or near the visible range) that we most usually

encounter the ‘wave particle duality’ which requires a familiarity with both concepts.

The propagation of light is determined by its wave nature, and its interaction with matter is

determined by quantum physics. The relation of the energy of the photon to common levels of energy

in matter determines the relative importance of the quantum at different parts of the spectrum: cosmic

gamma rays, with a high photon energy and a high photon momentum, can act on matter explosively

or like a high-velocity billiard ball, while long infrared or radio waves, with low photon energies,

usually only interact with matter through classical electric and magnetic induction. We can explore

these extremes in the following examples.

Figure 1.7 The electromagnetic spectrum
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1. What would be the velocity of a tennis ball, mass 60 g, with the same energy as a 1020 eV cosmic

gamma ray photon?

Electron volt ¼ 1:602� 10�19 J. Kinetic energy 1
2

mv2 ¼ 1020 eV ¼ 1020 � 1:6� 10�19 J. Velo-

city of 0.06 kg tennis ball is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1020 � 1:6� 10�19

60� 10�3

r
¼ 23m s�1ð¼ 83 kmh�1Þ:

2. At what temperature would a molecule of hydrogen gas have, on average, the same energy as a

photon of the 21 cm hydrogen spectral line?

In statistical physics each degree of freedom has an average energy of 1
2

kT . A hydrogen molecule

has 5 degrees of freedom (3 translational and 2 rotational); hence thermal energy ¼ 5
2

kT. Photon

energy hn ¼ hc=l, so that T ¼ 2
5

hc=kl ¼ 0:068K.

3. What wavelength of electromagnetic radiation has the same photon energy as an electron

accelerated to 100 eV?

Photon energy ¼ hn ¼ hc=l ¼ 100� 1:6� 10�19J. So

l ¼ 6:63� 10�34 � 3:00� 108

1:6� 10�17
¼ 1:24� 10�8 m ¼ 12:4 nm

(ultraviolet light; see Figure (1.7).

4. An X-ray photon with wavelength 1:5� 10�11 m arrives at a solid. How much energy (in eV) can it

give to the solid?

hn ¼ hc

l
¼ 6:63� 10�34 � 3:00� 108

1:5� 10�11
¼ 1:32� 10�14 J ¼ 8:3� 104 eV:

The photon energy of visible light waves, ranging from 1.5 to 3 electron volts (eV), is such that

quantum effects dominate only some of the processes of emission and absorption or detection. The

visible spectrum contains the marks of quantum processes in the profusion of colour from line

emission and in line absorption; it can also display a continuum of emission over a wide range of

wavelengths, giving ‘white’ light, whose actual colour is determined by the large-scale structure of

the continuum spectrum rather than its fine detail.

1.7 Stimulated Emission: The Laser

At the start of this chapter we remarked on the apparently complete understanding of optics at the

beginning of the twentieth century. The wave nature of light was fully understood, stemming from the

classical experiments of Young, Fresnel and Michelson, and substantiated by Maxwell’s electro-

magnetic theory. Much of the content of our later chapters on interference and diffraction is derived

directly from that era (with some refinements). Even Planck’s bombshell announcement in 1900 that

blackbody radiation is emitted by quantized oscillators, and Einstein’s demonstration in 1905 of the

reality of photons through his explanation of the photoelectric effect, completed rather than disturbed

the picture; they had cleared up a mystery about the interchange of energy between matter and
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electromagnetic waves. Einstein’s theory of that interaction, however, contained the seed of another

revolution in optics, which germinated half a century later with the invention of the laser.

Einstein in 1917 showed that there are three basic processes involved in the interchange of energy

between a light wave and the discrete energy levels in an atom. All three involve a quantum jump of

energy within the atom; typically in the visible region this is around 2 eV. Figure 1.8 illustrates the

three basic photon processes; the processes are illustrated adopting a model with only two energy

levels, although there are many more energy levels even in the simplest atom. As depicted in

Figure 1.8, the first is the absorption of a photon which can occur when the quantum energy hn of the
photon equals the energy difference between the two levels (a resonant condition) and the photon

falls on an atom in the lower level; the atom then gains a quantum of energy. The second is

spontaneous emission, when an atom in the upper level emits a photon, losing a quantum of energy in

the process. The third is stimulated emission, in which the emission of a photon is triggered by the

arrival at an excited atom of another, resonant photon. This third process was shown by Einstein to be

essential in the overall balance between emission and absorption. What emerged later was that the

emitted photon is an exact copy of the incident photon, with the same direction, frequency and phase;

further, each could then stimulate more photon emissions, leading to the build-up of a coherent wave

which can attain a very great irradiance (or ‘intensity’, in old terminology).7 The build-up requires the

number of atoms in the higher energy level to exceed the number in the lower level, a condition

known as population inversion, so that the rate of stimulated emission exceeds the rate of absorption.

The energy supply used to create the population inversion is often referred to as a pump, which in

Figure 1.9 is light absorbed between a ground level E0 and level E1. If the excitation of this level is

short-lived, and it decays to a lower but longer-lived level E2, the process leads to an accumulation

Spontaneous emission

Resonant absorption

Stimulated emission

Figure 1.8 Three basic photon processes: absorption, spontaneous emission and stimulated emission. For
simplicity only two energy levels are shown

7See Appendix 1 for the definition of irradiance and other radiometric terms.
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and overpopulation of atoms in the level E2 compared with E0. Stimulated emission, fed by energy

from a pump, is the essential process in a laser. Prior to the laser, stimulated emission had been

demonstrated in 1953 in the microwave region of the spectrum by Basov, Prokhorov and Townes,8 an

achievement for which they were awarded the Nobel Prize. We describe in Chapter 15 the earliest

laser, due to T.H. Maiman in 1960.

The process of stimulated emission in a laser builds up a stream of identical photons, which add

coherently as the most nearly ideal monochromatic light, with very narrow frequency spread and

correspondingly great coherence length (Chapter 13). Paradoxically, lasers, which depend funda-

mentally on quantum processes, produce the most nearly ideal waves. Lasers have allowed the

classical experimental techniques of interferometry and spectroscopy to be extended into new

domains, which we explore in Chapter 9 on the measurement of length and Chapter 12 on high-

resolution spectrometry.

Largely as a result of the discovery and development of lasers, a new subject of photonics has

developed from pre-laser studies of transmission and absorption in dielectrics. Coherent laser beams

easily achieve an irradiance many orders of magnitude greater than that of any thermal source,

leading to very large electric fields and non-linear effects in dielectrics, such as harmonic generation

and frequency conversion. There are many practical applications, some of which are more familiar in

electronic communications, such as switching, modulation and frequency mixing. The title of this

book indicates the current importance of lasers and photonics; the materials involved, including those

used in non-linear optics, are included in Chapters 16 on laser light, 17 on semiconductors, 18 on light

sources and 19 on detectors.

E1

E2

E0

Figure 1.9 Energy levels in the three-level laser. Energy is supplied to the atom by absorption from the ground
level to the excited level E1; spontaneous emission to the long-lived level E2 then results in overpopulation of
that level. Transitions from E2 to ground are then the stimulated emission in the laser

8They demonstrated a maser process, Microwave Amplification by the Stimulated Emission of Radiation. Note

that strictly speaking this and the related laser process refer to amplification; devices which use the process in

oscillators which generate microwaves and light are, however, known simply as masers and lasers.
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1.8 Photons and Material Particles

As we noted in Section 1.1, the wave-like character of electrons was demonstrated in the 1920s,

following the prediction by de Broglie that any particle with mass m ¼ E=c2 (where E is the total

relativistic energy) and moving with velocity v has an associated wave with wavelength l ¼ h=mv.
This association was eventually demonstrated in atoms, and even in molecules; in 1999 the wave–

particle duality of the large molecule fullerene, or C60, was demonstrated in a diffraction experiment

by Arndt et al.9

There can be little doubt of the actual individual existence of a large particle such as a molecule of

fullerene. Can we make a similar statement about the individual existence of photons? Ever since

Planck and Einstein introduced quantum theory there has been a debate about the actual existence of

photons as discrete objects. Light can be depicted as a ray, or as a wave; can it be thought of as a

volley of photons, like a flock of birds moving from one roosting place to another? Should the wave

nature of material particles, which constrains them to their behaviour in diffraction and interferometer

observations, lead us to conclude that light has a similar dual nature?

Consider the classical interferometer typified by Young’s double slit (Figure 1.10), which we

describe in Chapter 8. Monochromatic light from the slit source passes through the pair of slits,

forming an interference pattern on the screen. A detector on the screen records the arrival of

individual photons, which in aggregate trace out the interference pattern, even when the intensity is so

low that each recorded photon must have been the only photon present in the apparatus at any time.

Through which slit did it pass? We naturally try to find out by placing some sort of detector at one or

both slits, but as soon as we detect and locate the photon the interference pattern disappears.

Detecting which slit the photon traverses has the same effect as forcing it to act like a localized

quantum which passes through one slit at a time.

This behaviour is a simple example of the complementarity principle formulated by Bohr; if we

know where the photon is, we cannot have an interference pattern, and if an interference pattern

exists, it is impossible to specify the position of the photon. We can only observe that a photon has

reached the detector, and the probability that it will arrive at any location is determined by its wave

nature.

Diffraction and interference of material particles follow a similar pattern. In principle the double

slit of Figure 1.10 could be demonstrating the de Broglie waves associated with a large molecule such

as fullerene. Exactly the same dilemma arises: the interference pattern is observed even if only one

molecule is in the apparatus at any time, but complementarity prevents us from knowing which slit

the particle goes through, without destroying the interference pattern.

It has been suggested that the photon can exist in two places at once, and even that the large

molecule is similarly ‘delocalized’. This is better expressed by treating the wave as the basic

description in both cases, and equating the probability of observing a particle or photon at a particular

location to the intensity of the wave at that location. If any diffraction phenomenon is involved, the

intensity pattern is determined by the correlation between separate wave components. If the separate

components are ‘de-correlated’ by any process, the interference between wave components dis-

appears. The analysis of correlation, which we present in Chapter 13, provides a unified framework

for understanding diffraction both in light and in material particles. The difference, as noted in

9M. Arndt et al., Nature 401, 680, 1999.

1.8 Photons and Material Particles 15



Section 1.1, is that a photon only exists as a quantized interchange between a field and an emitter or

detector, while the individual existence of a material particle can hardly be questioned.

Problem 1.1
Gallium arsenide (GaAs) is an important semiconductor used in photoelectronic devices. It has a refractive index

of 3.6. For a slab of GaAs of thickness 0.3mm show that a point source of light within the GaAs on the bottom

face will give rise to radiation outside the top face from within a circle of radius R centred immediately above the

point source. Find R.

Problem 1.2
In the Pulfrich refractometer (Figure 1.11), the refractive index n of a liquid is found by measuring the emergent

angle e from the prism whose refractive index is N. Show that if i is nearly 90�

n � ðN2 � sin2 eÞ1=2:

Problem 1.3
The angular radius of a rainbow, measured from a point opposite to the Sun, may be found from the geometry of

the ray in Figure 1.12, which lies in the meridian plane of a spherical drop of water with refractive index n. The

n

e

i

r

Liquid, index 

Prism,
index N

Figure 1.11 Pulfrich refractometer

Figure 1.10 Double slit interferometer. Through which slit did each individual photon or electron go?
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angular radius is a stationary value of the angle through which a ray from the Sun is deviated; show that it is

given by

cos i ¼ n2 � 1

3

� �1=2

:

Note that the internal reflection is near the Brewster angle (see Section 5.4), so that the rainbow light is polarized

along the circumference of the bow.

Problem 1.4
Show that the apparent diameter of the bore of a thick-walled glass capillary tube of refractive index n, as seen

normally from the outside, is independent of the outer diameter, and is n times the actual diameter.

Problem 1.5
Show that the lateral displacement d of a ray passing through a plane-parallel plate of glass refractive index n,

thickness t, is related to the angle of incidence y by

d � ty 1� 1

n

� �

provided that y is small.

Problem 1.6
If the refractive index n of a slab of material varies in a direction y, perpendicular to the x axis, show by using

Huygens’ construction that a ray travelling nearly parallel to the x axis will follow an arc with radius

n
dn

dy

� ��1

:

(Consider a sector of wavefront dy across, and compare the distances travelled in time t by secondary waves

from each end of the sector.)

r

2 r

i

r

i

Figure 1.12 A ray refracted in the meridian plane of a spherical raindrop.
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Problem 1.7
Show that the geometric distance of the horizon as seen by an observer at height h metres is approximately

3.5 h1=2 kilometres. The radius of the Earth � 6000 km.

Use the result of Problem 1.6 to calculate how this is affected by atmospheric refraction, if this is due to pressure

changes only with an exponential scale height of 10 kilometres. The refractive index of air at ground level is

approximately 1.000 28.

Problem 1.8
The refractive index of solids at X-ray wavelengths is generally less than unity, so that a beam of X-rays incident

at a glancing angle may be reflected, as in total internal reflection. If the refractive index is n ¼ 1� d show that

the largest glancing angle for reflection is ’
ffiffiffi
d

p
. Evaluate this critical angle for silver at l ¼ 0:07 nm where

d ¼ 5:8� 10�6.
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2 Geometric Optics

Optics is either very simple or else it is very complicated.

Richard P. Feynman, Lectures on Physics, Addison-Wesley, 1963.

That ye rays wch make blew are refracted more yn ye rays wch make red appears from this experimnt.

Isaac Newton, Quaestiones.

Light, which is propagated as an electromagnetic wave, may often conveniently be represented by

rays, which are geometrical lines along which light energy flows; the term geometric optics is derived

from this concept. Rays are lines perpendicular to the wavefronts of the electromagnetic wave. An

alternative concept is to regard the action of the various components of optical systems, such as

convex and concave mirrors and lenses, as modifying a wavefront by changing its direction of travel

or its curvature. This wavefront concept is useful, but the precise geometry of ray tracing is

nevertheless essential for the detailed design of optical instruments.

We start our exposition of geometric optics by analysing the action of a thin prism and a simple

lens in terms both of waves and of rays, and then develop the basic ray theory of imaging. Images are

inevitably imperfect, apart from trivial cases such as images in plane mirrors; in the second part of

this chapter we analyse the imperfections as various types of aberration.

The use of a lens as a simple magnifier, and the combination of optical components in systems such

as the microscope and telescope, will be considered in the following chapter.

2.1 The Thin Prism

The wavefront concept is usefully applied to the bending of a light ray in a prism, with apex angle a
and refractive index n, assuming free space1 outside the prism. We first calculate the angle of

deviation y by applying Snell’s law (equation (1.4)) to each surface in turn, and find a useful

approximation for a thin prism at near-normal incidence. We then show that the wavefront approach

leads directly to this approximation.

1The optical properties of free space and air are nearly the same, and are taken as identical in this chapter.

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
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2.1.1 The Ray Approach

In Figure 2.1(a) the ray is incident on the first surface at angle b1. Following the ray through the prism
we have for the two refracting surfaces

n sin b2 ¼ sin b1
n sin b3 ¼ sin b4: ð2:1Þ

The total deviation is y ¼ b1 � b2 � b3 þ b4. In the triangle OAB we have a ¼ b2 þ b3, so that

y ¼ b1 þ b4 � a: ð2:2Þ

Figure 2.1(b) shows the results of a numerical solution of equations (2.1) and (2.2), giving y for a

prism with a ¼ 10� and n ¼ 1:5, with b1 between 0
� and 25�. There is a minimum deviation when the

ray passes symmetrically through the prism, at b1 ¼ 7:5�. The angle of deviation varies only between

5:02� and 5:23� over the whole range in Figure 2.1(b).

If the analysis is restricted to small values of a and b, so that to a good approximation sin b � b,
equations (2.1) become

b1 ¼ nb2 and nb3 ¼ b4 ð2:3Þ
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Figure 2.1 A prism with small apex angle a refracts a ray or its corresponding planar wavefront through an
angle which is nearly independent of the angle of incidence, provided it is near normal. (a) The ray approach.
(b) Deviation angle for a 10� prism over a range of angles of incidence, for n ¼ 1:5. (c) The wavefront approach
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and equation (2.2) becomes

y ¼ ðn� 1Þa: ð2:4Þ

In the example above the simplified equation gives y ¼ ð1:5� 1Þ � 108 ¼ 5�, close to the correct

result y ¼ 5:02� at minimum deviation.

2.1.2 The Wavefront Approach

We now derive equation (2.4) from the wavefront approach. In Figure 2.1(c) the incident wavefront is

AB and the emergent wavefront A0 B0. The prism is arranged symmetrically, for minimum deviation,

but the same argument can be applied for wavefronts over a range of angles about this position.

To calculate the angle of deviation we note that the optical paths AA0 and BB0 are equal.

(Remember from Section 1.2 that this implies that the time of travel from A to A0 is the same as from

B to B0.) The refracting face length of the prism is l. While the wavefront at B passes through a length

2l sin 1
2
a of the prism, the wavefront at A passes through a length 2l sin 1

2
ðyþ aÞ of air. The wave

velocity is a factor n slower inside the prism, so that the two equal optical paths are 2nl sin 1
2
a and

2l sin 1
2
ðyþ aÞ. At minimum deviation y is therefore given by

y ¼ 2 sin�1½n sinða=2Þ� � a: ð2:5Þ

As in the ray treatment, we approximate for the small-angle prism by writing the sine of an angle as

the angle itself (in radian measure), and the angle of deviation y is then given very simply by

y ¼ ðn� 1Þa ð2:6Þ

as in equation (2.4) above.

2.2 The Lens as an Assembly of Prisms

A convex lens, shown in section in Figure 2.2, is familiar as a simple hand-held magnifying glass. The

lens is also shown as a series of thin prisms with apex angle increasing with distance y from the axis.

As before, we assume all angles are small. If the radius of curvature of both surfaces is r, the prism

angle at height y is 2y=r (Figure 2.2(b)) giving a wavefront deviation

y ¼ ðn� 1Þ2y=r: ð2:7Þ

As shown in Figure 2.2, a plane wavefront passing through the lens will become curved, and will

converge to a focal point at a distance f ¼ y=y ¼ r=2ðn� 1Þ from the lens. This is the focal length of

the lens. The action of the convex lens is to add a curvature2 2ðn� 1Þ=r to the plane wavefront.

Within the approximation of small angular deviation, the wavefront over the whole of the lens

converges on a single focal point.

2A spherical surface with radius R is said to have a curvature 1=R. A planar surface is the limiting case of a

sphere with infinite radius and zero curvature.
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Moreover, a wavefront arriving at a different angle will converge on a different point at the same

distance from the lens, i.e. in the same focal plane, so that the lens gives a flat image of a distant

scene.

Figure 2.3(a) shows the effect of a convex lens on a diverging wavefront originating from a point

source P1 at distance u from the lens. The wavefront emerging from the lens converges on an image

point P2 at distance v from the lens. The change in curvature is related to the power of the lens.

Before proceeding further, we need to specify our sign convention for distances and angles. In

geometric optics, there are two primary conventions: real-positive and Cartesian. In the first of these,

which is short for ‘real-positive, virtual-negative’, distances along the optic axis are taken as positive

for an object or image point that is real, and negative for one that is virtual. This convention is well

suited to applications of Fermat’s principle, or making the optical path a minimum.3 The Cartesian

convention, on the other hand, is ideal for systematic ray tracing in complex systems, i.e. those

with multiple interfaces, and for this reason it is used in the matrix approach to paraxial optics

(Section 2.8). The signs of coordinates and angles in the Cartesian system are explained in Figure 2.4;

in addition this system specifies that if the centre of curvature of a spherical surface is on the same

side as the incident light, the radius of curvature r < 0, and on the opposite side, r > 0.

3Or, more rarely, a maximum.

Focal point

(a)

(b)

y
r

α

α

C

Figure 2.2 (a) A simple converging lens as an assembly of prisms. (b) The prism angle of one face of a lens at
distance y off axis. a � sin a ¼ y=r
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We now introduce the term vergence for the curvature of a wavefront, using a definition which

applies generally to refraction and reflection at curved surfaces. The vergence V of a wavefront

emanating from (or converging to) an object (or image point) at signed distance L in a medium with

refractive index n is defined as V ¼ n=L; the sign of L is chosen so that vergence is positive for a

converging wavefront and negative for a diverging wavefront. In Figure 2.3(a) the incident diverging

wavefront has a vergence V ¼ 1=u which is negative since the object distance u < 0; the convex lens

adds a positive vergence 2ðn� 1Þ=r, and the emergent wavefront with positive vergence V 0 ¼ 1=v
converges on the image point P2 at distance v > 0. The result is

1=v � 1=u ¼ 2ðn� 1Þ=r: ð2:8Þ

Equation (2.8) is derived rigorously in Section 2.4. Problem 2.1 suggests a derivation based on the

bending-angle approach of this section, including the case when the two surfaces have different radii.

The change in vergence imposed on the wavefront by the lens is the power P of the lens; in general

for any imaging system

V 0 � V ¼ P: ð2:9Þ

Figure 2.3 Convex (a) and concave (b) lenses changing the curvature of a wavefront. In a lens equation such as
equation (2.8), the curvatures are evaluated on wavefronts immediately adjacent to the lens

θ

+y

+z

r (<0)

Surface

Figure 2.4 The Cartesian coordinate system in geometric optics. Light is incident from the left. The signs of
distances z and y follow normal geometric convention, and anticlockwise angles are positive. A spherical surface
or wavefront with centre of curvature to the left has a negative radius of curvature
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A concave lens, as in Figure 2.3(b), has a negative power, so that the incident divergent wavefront in

the figure becomes more divergent, i.e. it has an increased negative vergence. The action of any thin

lens on the vergence of a wavefront (in air, where n ¼ 1) is expressed in the lens equation:

1

v
� 1

u
¼ 1

f
: ð2:10Þ

Example. A camera has a simple lens with a focal length 5 cm (¼0.05m). How far from the film

must the lens be for a flower 0.7m from the lens to be in focus?

Solution. With rays diverging from the object the vergence 1=u and u are both negative: u ¼ �0:7m.

Solving equation (2.10) for v : v ¼ fu=ðf þ uÞ ¼ 0:05ð�0:7Þ=ð0:05� 0:7Þ ¼ 0:054m ¼ 54mm.

We have already related the focal length of the lens to the refractive index n and the radius of

curvature r of the two equally curved surfaces. A simple extension of this analysis to a thin lens with

different radii of curvature r1; r2 (Section 2.4) gives the focal length

1

f
¼ ðn� 1Þ 1

r1
� 1

r2

� �
ð2:11Þ

where the subscripts refer to the first and second interfaces crossed by the incident light.

For a biconvex lens such as that shown in Figure 2.3(a), r1 > 0 and r2 < 0; hence both surfaces add

to the positive value of the power. For the diverging lens in Figure 2.3(b), the signs of r1; r2 are the

opposite, and both contribute to a negative power.

The power P of a lens is defined as the inverse of its focal length, so that P ¼ 1=f ; measuring f in

metres, the power of a lens is specified in dioptres (D ¼ m�1). If two thin lenses are placed close

together or in contact their powers simply add, just as a contact lens adds to (or subtracts from) the

power of the unaided eye.

Example. Consider a lens made of glass with n ¼ 1:5 and r1 ¼ 20 cm, r2 ¼ �33:3 cm. Find its

power and its focal length.

Solution. In metres: 1=f ¼ ð1:5� 1Þð1=0:20þ 1=0:333Þ ¼ 4. The power is 4 dioptres and the focal

length is 0.25m.

2.3 Refraction at a Spherical Surface

We now apply the concept of vergence to refraction at a single spherical surface between media

with refractive indices n1 and n2, as in Figure 2.5. Note the sign of the radii of curvature: if the

centre of curvature C is on the same side as the incident light, then r < 0, and on the opposite

side r > 0.

To find the power of the refracting surface, we trace a ray from the object point P1 to the image

point P2. Note that the labelled angles should all be considered small, so that sines and tangents

are approximated by the angle itself, and the point A is taken to be not far from the axis P1CP2. This is
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the paraxial approximation, which applies to rays which are not far from parallel to the optic axis.

Then we can take the object distance4 AP1 ¼ u < 0 and the image distance AP2 ¼ v as in our

previous analysis of the lens. The relation between object distance and image distance is obtained by

constructing perpendiculars P1M1 and P2M2 to the radial line through A, when the similar triangles

P1M1C, P2M2C give the exact equation:

CM1

P1M1

¼ CM2

P2M2

: ð2:12Þ

Inserting the approximation that P1A ¼ �u, and AP2 ¼ v, we find

�u cosf1 þ r

�u sinf1

¼ v cosf2 � r

v sinf2

: ð2:13Þ

Using the relation n1 sinf1 ¼ n2 sinf2, and setting the cosines to unity in the paraxial approximation,

this becomes:

n2

v
� n1

u
¼ n2 � n1

r
¼ P ð2:14Þ

where P is defined as the power of the surface.

Example. A long plastic rod of refractive index n ¼ 1:4 has a radius of 1 cm and a convex spherical

endface of the same radius. Where is the image of a small light bulb 10 cm from its endface?

Solution. Using n2=v � n1=u ¼ ðn2 � n1Þ=r, we find v ¼ n2½n1=uþ ðn2 � n1Þ=r��1
. So v ¼

1:4ð1=uþ 0:4=rÞ�1 ¼ 1:4ð�1=10þ 0:4Þ�1
cm ¼ 1:4 cm=0:3 ¼ 4:7 cm. With v positive, we know

the rays converge to a real image point within the glass. (If v were < 0, the rays in the glass would be

divergent and could be traced back to a virtual image point in the air.)

Figure 2.5 Geometry of a ray refracted at a spherical surface between media of refractive indices n1 and n2.
P1 and P2 are conjugate points. The surface as shown has positive power since n2 > n1

4Note the sign: this accords with the definition of vergence, and also with a Cartesian coordinate system with

light travelling from left to right.
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2.4 Two Surfaces; the Simple Lens

The simple thin lens in air, with two convex surfaces, is analysed by adding two equations of the form of

equation (2.14) and assuming that the thickness of the lens is negligible. We give a negative sign to the

second radius since the centre of curvature is to the left. For the first surface we set n1 ¼ 1 and n2 ¼ n,

the refractive index of the glass, and find an image distance v1, which becomes the object distance for

the second surface. For object distance u from the lens we obtain for the first surface

n

v1
� 1

u
¼ n� 1

r1
ð2:15Þ

and for the second surface, refracting from glass to air,

1

v
� n

v1
¼ 1� n

r2
: ð2:16Þ

The sum of these gives the lens equation

1

v
� 1

u
¼ ðn� 1Þ 1

r1
� 1

r2

� �
ð2:17Þ

which substantiates equation (2.11).

The power of a thin lens is the sum of the powers of the two surfaces. If the object is at infinity, v in
equation (2.17) becomes the focal length f . The power is then 1=f .

2.5 Imaging in Spherical Mirrors

Figure 2.6(a) shows the action of a spherical concave mirror M on a wavefront, illustrating the

similarity with the action of a lens as in Figure 2.3. Figure 2.6(b) shows the geometry of an axial ray

P1CV and a ray at a small angle to the axis. A ray from the object at P1 is reflected at A on the mirror

surface, and reaches the image point P2 on the axis, which is defined by the line from P1 through the

centre of curvature C. The angles y of incidence and reflection are equal, so that the angle P1AP2 is

bisected by the line AC. Because the angles P1CA and P2CA are supplementary, they have equal

sines; the law of sines5 then gives us the exact relation

P1C

P1A
¼ CP2

P2A
: ð2:18Þ

Following the vergence through this system according to equation (2.9), note that distances u and

radius of curvature r are both negative, so that equation (2.18) becomes

r � u

u
¼ r þ v

v
ð2:19Þ

5The law of sines asserts that in a triangle the side lengths are proportional to the sines of the opposite vertex

angles.
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where we have used a paraxial approximation by writing P1A�P1 V ¼ �u and P2A � P2V ¼ v. We

obtain the mirror formula

1

v
� 1

u
¼ � 2

r
: ð2:20Þ

The same equation applies for a convex mirror, having due regard for the sign convention.

Equation (2.20) has the same form as equation (2.10) for a thin lens, provided we define the mirror’s

focal length by f ¼ �r=2.
It is instructive to observe one’s own image in convex and concave mirrors, especially noting the

position and magnification of the image in a concave mirror as the object (the face!) is placed in front

of or behind the centre of curvature. At the centre of curvature one’s image is immediately in front of

one’s face, and so appears huge. Close to the mirror one sees a normal image, not much different from

that in a plane mirror; outside the centre of curvature one sees an image not far behind the mirror,

reduced in size and inverted.

Example. A shaving mirror has a concave surface on one side with a radius of curvature of 40 cm,

and a plane mirror on the other side. When looking at oneself imaged in the plane side, how far from

the mirror should one’s face be for the image to be 30 cm away from the real face? The mirror

equation is 1=v � 1=u ¼ �2=r ¼ 2=1 ¼ 0, hence v ¼ u and one’s face must be at u ¼ �15 cm. Now

repeat for the concave side of the mirror. You may ignore any real images.

Solution. We want our real face (u < 0) to form a virtual image (v < 0). This means

uþ v ¼ �0:3m, and the mirror equation is 1=v � 1=u ¼ �2=ð�0:4Þ ¼ 5m�1. This gives

v ¼ u=ð5uþ 1Þ. Substituting this into v þ u ¼ �0:3 gives u2 þ 0:7uþ 0:06 ¼ 0. This has two

roots u ¼ �0:6;�0:1. The first of these yields v ¼ 0:3, i.e. a positive value indicating a real

image. The other root u ¼ �0:1 yields v ¼ �0:1=ð1� 5� 0:1Þ ¼ �0:2. We must therefore put

our face 10 cm from the mirror to see its image 20 cm behind the mirror. Note that we get a real

image, v ¼ u=ð5uþ 1Þ > 0, whenever our real object is more than the focal length from our

mirror (or u < �ð1=5Þ in this case). This is a general property of mirrors and thin lenses that

converge.

Figure 2.6 A concave spherical mirror: (a) action of the mirror on a wavefront; (b) the geometry of a
paraxial ray

2.5 Imaging in Spherical Mirrors 27



2.6 General Properties of Imaging Systems

It is remarkable how well simple optical systems can work, despite the approximations that we have

made in the lens theory. Even if the object point is at some distance from the axis of a simple lens,

rays still converge on an off-axis image point found from the lens equation. A simple lens can

therefore make an image of an extended object, in which the scale of the image is almost the same

over a considerable area. The object and image planes containing an object and its image are called

conjugate planes, and we now find the magnification of the image, which is the ratio between the

sizes of the image and the object.

The geometric specification of a perfect optical system is that points and lines in the object space

should correspond precisely to points and lines in the image space. Mathematically, the two spaces

are linked by a projective transformation, and there must be a simple relation between distances in the

object and image spaces. Equation (2.17) is an example of such a relation involving axial distances

only. There is also a linear relationship between perpendicular distances, giving the transverse

magnification of the system. The magnification depends of course on the positions of the conjugate

planes containing the object and image.

We have so far considered only the theory of a thin spherical lens, but the same concepts can be

applied to a lens whose thickness cannot be neglected, and to a multiple lens system such as those

used in camera lenses (see Chapter 3). The important concept is to define planes in the system from

which the axial distances should be measured. Figure 2.7 shows the location of the principal planes in

a thick lens. These are the planes on which rays from a focal point intersect corresponding rays from a

point at infinity; each focal length is measured from its corresponding principal plane. (It may also be

convenient, as for example in the design of a camera, to define a back focal length as the distance

from the back, or outgoing side, of a lens system to the focal plane.)

Example. Unit magnification property of the principal planes. Use ray tracing to prove that pairs of

conjugate points on the principal planes are at the same height y. Given any off-axis object point in

one principal plane, you will need to trace two different rays through it to locate its conjugate image

point.

Solution. We apply the defining properties of the principal planes, PP1, PP2, shown in Figure 2.8.

Ray a, passing from the first focal point through object point P on PP1, emerges parallel to the optic

axis; ray b, incident on P parallel to the axis, emerges through the second focal point. (The rays are

drawn slightly separated for clarity.) On the image side, the outgoing rays intersect at point Q on PP2.

Since the rays travel parallel to the optic axis between P and Q, we see that these points are at the

same height above the axis, F1ABF2.

The general linear relationship between distances in object and image planes becomes very simple

when axial distances of object and image are measured from the focal planes, as in Figure 2.9. All

distances are signed as shown: a leftward arrow signifies a negative quantity, and a rightward arrow

positive. Denoting axial and transverse distances by z and y, and using subscripts 1 and 2 for the

object and image spaces, the relationship deviced from similar triangles is

f1

z1
¼ z2

f2
¼ � y2

y1
: ð2:21Þ
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The transverse or lateral magnification is defined as mT ¼ y2=y1. As noted in Section 2.8, the focal

lengths on the two sides are related by

f1

f2
¼ � n1

n2
ð2:22Þ

where n1; n2 are the refractive indices in the image and object spaces. For a system immersed in air,

n1 ¼ n2, and f1 ¼ �f2. Equation (2.21) predicts that when z1 ¼ �f1; y1 ¼ y2 and z2 ¼ �f2. This

Secondary principal
plane

Primary principal
plane

Back focal
length

Second 
focal
point

First focal
point

F2

F1

Figure 2.7 A thick lens. Rays from infinity converge on the focal points F1, F2. The two principal planes are
located by extending each incident and outgoing ray along straight lines until they intersect. The back focal
length is measured from the surface of the lens that faces away from the incident light

A

1
FF 2

B

b
a

b
a

P Q

2PP1PP

Figure 2.8 Unit magnification between principal planes
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shows that the principal planes are conjugate planes of unit magnification: if the object point is in one,

the image point is in the other and at the same height. By substituting z1 ¼ 0, we obtain z2 ¼ 1,

infinite magnification, and each focal plane has a conjugate plane at infinity. The constants f1 and f2
are the principal focal lengths of the system.

Equation (2.21) contains Newton’s equation

z1z2 ¼ f1f2: ð2:23Þ

Note that z1 and z2, like f1 and f2, will always have opposite signs (see Figure 2.9).

We now obtain a general Gaussian equation in place of equation (2.23), eliminating z1; z2 in favour

of the object and image distances u; v as measured from their respective principal planes (see Figure

2.9). Substituting z1 ¼ u� f1, z2 ¼ v � f2 into equation (2.23), we find

ðu� f1Þðv � f2Þ ¼ uv � vf1 � uf2 þ f1f2 ¼ f1f2: ð2:24Þ

This simplifies to f2=v þ f1=u ¼ 1, and insertion of f1=f2 ¼ �n1=n2 from equation (2.22) converts

this to the desired Gaussian equation:

n2

v
� n1

u
¼ n2

f2
¼ �n1

f1
: ð2:25Þ

It should be noted that this includes the basic equations (2.10), (2.14), (2.20) respectively for a thin

lens, a single refractive surface and a spherical mirror.

A longitudinal magnification can be found by differentiating Newton’s equation:

mL ¼ dz2

dz1
¼ � f1f2

z21
¼ � z2

z1
: ð2:26Þ

This indicates, for example, the amount of refocusing required when an object moves closer to a

camera lens.

Figure 2.9 Coordinate systems for any axisymmetric, paraxial optical systems. P and Q are conjugate points.
Axial distances z1, z2 are measured from the focal planes F1, F2
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An angular magnification mA is defined by the ratio of angles at which a ray cuts the axis in the

image and object planes. It is given by the ratio of the transverse and longitudinal magnifications:

mA ¼ z1

z2

y2

y1
¼ � f1

z2
¼ � z1

f2
ð2:27Þ

where we used equation (2.21) in the last two members.

Example. Consider an object point O approaching the left-hand focal plane FP1 at a constant

distance off-axis (y1 6¼ 0). By tracing rays through the system, make a sketch indicating that the

coordinates y2; z2 of the image point both tend to infinity.

Solution. In Figure 2.10, we see that as the object point (Oa;Ob; . . .) moves closer to O1 on the focal

plane, the ray from O through the focal point F1 becomes steeper; thus the image point (Ia; Ib; . . .)
recedes to infinity both vertically and horizontally.

2.7 Separated Thin Lenses in Air

Many optical systems use components which are themselves made up of two or more lenses, as for

example in a telescope eyepiece. The analysis of such systems by the repeated use of the simple lens

formula (equation (2.17)) soon leads to tedious algebra, and it is more usual to follow a ray-tracing

procedure. We now analyse the separated pair of Figure 2.11 in this way, following an incident ray

parallel to the axis as it is deviated by each lens.

At some distance from the axis the lens acts like a thin prism, as in Section 2.2. From equation (2.7)

the angular deviation D of the ray at a distance y from the axis of a thin lens of power P is

D ¼ ðn� 1Þy 1

r1
� 1

r2

� �
¼ yP: ð2:28Þ

We have seen in Figure 2.1(b) that for paraxial rays the angular deviation is almost independent of the

incident angle. The ray in Figure 2.11 which meets the first lens at a distance ya from the axis, and

then the second at distance yb from the axis, has a total angular deviation given by the sum

Dtot ¼ Da þ Db ¼ yaPa þ ybPb: ð2:29Þ

Figure 2.10 Finding the conjugate of a focal plane by ray tracing.
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As can be seen in Figure 2.11, yb ¼ ya � dDa. Equation (2.29) therefore becomes

Dtot ¼ yaðPa þ Pb � dPaPbÞ: ð2:30Þ

The power Ptot of the combination, defined as f�1
2 where f2 is the principal image-side focal length,

is Ptot ¼ Dtot=ya. The power of the pair of lenses separated by distance d is therefore

Ptot ¼ Pa þ Pb � dPaPb: ð2:31Þ

The focal point can also be found geometrically from the figure, without recourse to tedious algebra.

Note that the power of the combination is less than the sum of their individual powers, unless they are

in contact, when the powers add directly.

If the space between the lenses has refractive index n, equation (2.31) should read

Ptot ¼ Pa þ Pb �
d

n
PaPb: ð2:32Þ

The powers Pa;Pb are the powers of a refractive spherical interface as in equation (2.14) (see

Problem 2.6). This applies for example to thick lenses, as in the following example.

Example. Find the power of a spherical glass lens, radius R, refractive index n.

Solution. Using equation (2.14), both faces of the globe have the same power Pa ¼ ðn� 1Þ=R ¼
ð1� nÞ=ð�RÞ ¼ Pb. Then equation (2.32) gives P ¼ 2ðn� 1Þ=R� ðn� 1Þ2=R2ð2R=nÞ, or

P ¼ 2ðn� 1Þ=ðnRÞ.

2.8 Ray Tracing by Matrices

Extending the ray-tracing example of Section 2.7 to more complex multiple lens systems, such as

those used in camera and microscope lenses, is conveniently achieved by a matrix method that

follows a ray through a series of surfaces and the space between them.

A ray at distance z along the axis is specified by its height y above the axis and its angle y to the

axis. For definiteness, the ray is traced from an input plane to an output plane (Figure 2.12). These

Figure 2.11 Ray tracing in a separated lens system. A ray parallel to the axis is deviated in both lenses, and
crosses the axis at the focus F2
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planes are chosen with considerable freedom, but often the simplest choice is to place them at the

outermost vertices of the system, where the optical elements intersect the optic axis. Sometimes, e.g.

in a thin lens or reflecting system, a single plane may serve for both input and output.

In the paraxial approximation, we can find a 2� 2 matrix M that converts the input values ðy0; y0Þ
to the output values ðyf ; yf ) by matrix multiplication. But the ability to trace arbitrary rays in this

fashion is not the point. The real payoff is that the existence and properties of the cardinal points

follow from M; these in turn lead, for paraxial systems, to general results such as those we discussed

in Section 2.6.

Figure 2.13(a) shows the progress of the ray along a distance d ¼ jz2 � z1j in a homogeneous

medium, when the value of y increases by d tan y1. With the paraxial approximation tan y ¼ y, this
gives the simple transformation

y2 ¼ y1 þ y1d

y2 ¼ y1:
ð2:33Þ

At a plane surface separating media with refractive indices n1 and n2 (Figure 2.13(b)), the

transformation is

y2 ¼ y1

y2 ¼ y1
n1

n2
:

ð2:34Þ
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Figure 2.12 Ray tracing: (a) the height and angle of a ray are measured relative to the optic axis; (b) sign
conventions for ray height and angle; (c) rays passing through the optical system are traced from input plane to
output plane
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At a curved boundary (Figure 2.13(c)), the angular transformation follows from equation (2.14), if we

put y1 ¼ �y1=u; y2 ¼ �y2=v, so that

y2 ¼ y1

y2 ¼ y1
n1

n2
þ n1 � n2

n2

� �
y1

r
:

ð2:35Þ

For a thin lens or a curved mirror, with focal length f , the transformation is

y2 ¼ y1

y2 ¼ y1 �
y1

f
:

ð2:36Þ

These transformations can be expressed in matrix form as

y2
y2

����
���� ¼ M11 M12

M21 M22

����
���� y1
y1

����
����: ð2:37Þ

Figure 2.13 Ray tracing: (a) in a homogeneous medium; (b) at a plane surface separating media with refractive
indices n1 and n2; (c) at a curved boundary
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In this equation the transformation matrix

M ¼ M11 M12

M21 M22

����
���� ¼ a b

g d

����
����; ð2:38Þ

known as the ray transfer matrix, represents the action of an optical element on the ray. The

advantage of this matrix representation is that a series of surfaces and spaces with ray matrices

M1;M2;M3; . . . ;MN is represented by a single matrix that is their product:

M ¼ MN . . .M3M2M1: ð2:39Þ

Notice that for light undergoing processes represented by the sequence 1,2,3. . . the matrices are

multiplied in reverse order.

Table 2.1 gives examples of ray matrices corresponding to equations (2.33), (2.35), (2.36) above.

For two lenses in contact the combined ray matrix is the product6 of their individual matrices:

M ¼ 1 0

�1=fb 1

����
���� 1 0

�1=fa 1

����
���� ¼ 1 0

�ð1=fa þ 1=fbÞ 1

����
���� ð2:40Þ

showing that the combination acts like a single thin lens with a power P ¼ 1=f equal to the sum of the

powers of the two lenses.

Notice that with all the basic optical elements shown in Table 2.1, we find the determinant

det M ¼ ad� bg ¼ n1=n2. (For the first and last cases, where n does not change, this reduces to 1.)

Suppose that a light ray passing through our system encounters refractive indices

n0; na; nb; . . . ; ny; nz; nf , in that order. Let us prove

det M ¼ n0=nf ; ð2:41Þ

Table 2.1 Ray matrices

Optical element Ray matrix Notation

Uniform medium
1 d

0 1

����
���� Distance d

Spherical interface
1 0

ðn1 � n2Þ=ðn2rÞ n1=n2

����
���� Radius r, refractive indices n1; n2

Thin lens or mirror
1 0

�1=f 1

����
���� Focal length f ¼ �r=2 for mirror

f ¼ ½ðn� 1Þð1=r1 � 1=r2Þ��1

6The product of an m� p matrix A ¼ jaijj with a p� n matrix B ¼ jbijj is an m� n matrix C with elements

cij ¼
Xp
k¼1

aikbkj:
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which provides a useful check on the ray matrix. If M is the product of matrices as shown in equation

(2.39), the determinants follow the rule det M ¼ det MN . . . det M3:det M2:det M1. All these factors

are unity except for interfaces between media; including only the latter, we can write

det M ¼ nz

nf

ny

nz

nx

ny
. . .

na

nb

n0

na
¼ n0

nf
; ð2:42Þ

and so, by a series of cancellations, we verify equation (2.41).

Given a matrix M, one can show with trigonometry (Section 2.9) that the cardinal points exist and

are unique. The six cardinal points are shown in Figure 2.14; they are the focal points F1;2, the

principal points P1;2 and the nodal points N1;2. The two nodal points are unique points on the axis

such that any off-axis ray aimed at N1 emerges as a conjugate ray parallel to the first and from the

direction of N2.
7 The cardinal points are located relative to the input or output planes by the signed

distances given in Table 2.2.

In order to cast our generic equation (2.25) into the desired form of V 0 � V ¼ P, we define the

system’s power by P ¼ nf =f2 ¼ �n0=f1 ¼ �nf g. As an application, consider the pair of separated

lenses in Section 2.7. For simplicity, take the input and output planes at the two thin lenses. Multiply

right-to-left the matrices for the first lens, the space between and the second lens:

M ¼ 1 0

�1=fb 1

����
���� 1 d

0 1

����
���� 1 0

�1=fa 1

����
���� ð2:43Þ

PP F

PP21

21 2

PP

2π

f 2

Input
plane

Output
plane

2N

φ 2

1N

1ν ν2

F1

1f

1φ 1π

Figure 2.14 Location of the input and output planes, principal planes and the six cardinal points in an
arbitrary paraxial system. Incident and transmitted rays illustrate the defining properties of the principal planes
and the cardinal points. Arrows to the right or left denote, respectively, positive or negative displacements

7For reflective systems, nodal points still exist if we consider conjugate rays to be ‘parallel’ when they have

equal angles: yf ¼ y0:
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to obtain

M ¼ 1� d=fa d

d=fafb � ð1=fa þ 1=fbÞ 1� d=fb

����
����: ð2:44Þ

By inspection, we read off g¼M21, and with nf ¼ 1, the total power of the system is

Ptot ¼ �8 ¼ 1=fa þ 1=fb � d=ðfa fbÞ, which agrees with equation (2.31).

2.9 Locating the Cardinal Points

From Table 2.2, we see that the four independent variables a; g; d and n0=nf determine the locations of

the cardinal points. g expresses the power of the system, while d and a reflect, respectively, the

arbitrary positions of the input and output planes. (But where is the matrix element b? Substituting

equation (2.41), namely ad� bg ¼ n0=nf , we could easily rewrite the entries in the table so as to

include b.)
The entries in the table can be derived from Figure 2.14 as follows.

2.9.1 Position of a Nodal Point

In Figure 2.15(a), we illustrate a ray directed at one nodal point, and its parallel conjugate ray

outgoing from the direction of the other nodal point. Based on the second line of equation (2.36), the

parallelism of initial and final rays requires

yf ¼ gy0 þ dy0 ¼ y0: ð2:45Þ

Substituting into this from Figure 2.14(a) the small-angle approximation y0 ¼ �v1 tan y0 ¼ �v1y0
gives the displacement from the input plane of the first nodal point: v1 ¼ ðd� 1Þ=g.

2.9.2 Position of a Focal Point

Figure 2.15(b) illustrates a defining characteristic of a focal point, i.e. that a ray extended through the

object side focal point will emerge parallel to the optic axis on the image side. For such a ray, the

initial angle y0 is any (small) angle, but the final angle yf , vanishes:

yf ¼ gy0 þ dy0 ¼ 0: ð2:46Þ

Table 2.2 Positions of cardinal points

Cardinal point Position relative to Displacement

F1 Input plane f1 ¼ d=g
F2 Output plane f2 ¼ �a=g
P1 Input plane p1 ¼ ðd� n0=nf Þ=g
P2 Output plane p2 ¼ ð1� aÞ=g
N1 Input plane v1 ¼ ðd� 1Þ=g
N2 Output plane v2 ¼ ðn0=nf � aÞ=g
F1 Principal plane 1 f1 ¼ f1 � p1 ¼ ðn0=nf Þ=g
F2 Principal plane 2 f2 ¼ f2 � p2 ¼ �1=g
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Substituting into this y0 ¼ �f1 tan y0 ¼ �f1y0 leads at once to the displacement from the input

plane of the first focal point: f1 ¼ d=g.

2.9.3 Position of a Principal Point

Figure 2.15(b) shows a ray passing through focal point F1. Equation (2.37) gives

yf ¼ ay0 þ by0 ¼ y0 þ p1y0
yf ¼ gy0 þ dy0 ¼ 0:

ð2:47Þ

Notice that we have augmented the first line with the defining property of the first principal plane, i.e.

that the incident focal ray has already achieved its final distance off-axis, yf , on that plane. We know

that the resulting homogeneous pair of equations

ða� 1Þy0 þ ðb� p1Þy0 ¼ 0

gy0 þ dy0 ¼ 0
ð2:48Þ

has a non-zero solution for ðy0; y0Þ only if the determinant of their coefficients vanishes:

ða� 1Þd� ðb� p1Þg ¼ 0. If we combine this with equation (2.41), we find the displacement from

the input plane of the first principal point, p1 ¼ ðd� n0=nf Þ=g.

PP F21 22N1N

1ν

θ  =θ

θ0

0f

PP F21 22N1N
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(b) 
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F1

φ 1

f 1

θ

y y
f

f

0

θ  = 0
1

π
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Output
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Optic axis

Optic axis

y
0

Figure 2.15 Location of (a) the nodal points, (b) a principal point
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2.9.4 A Focal Length

It follows from the two preceding results that

f1 ¼ f1 � p1 ¼ ðn0=nf Þ=g: ð2:49Þ

2.9.5 The Other Cardinal Points

So far we have derived four of the eight formulae in Table 2.2. The remaining four are easily derived

by exploiting symmetry: the system is invariant under light ray reversal (see Problem 2.9).

Apart from the usefulness of locating the cardinal points, we note that for any paraxial system

consisting of the basic optical elements mentioned above–or, equivalently, given its transfer matrix

M–all six cardinal points exist8 and are unique. This powerful result is amazing considering the

infinite variety of paraxial systems one might put together from the basic elements.

2.10 Perfect Imaging

An ideal, or perfect, optical system would be one in which every point in an object space corresponds

precisely to a point in an image space, being connected to it by rays passing through all points of the

optical system. The optical path from any object point to its image is then the same along all rays.

There is a fundamental reason, first formulated by Maxwell, why this cannot be achieved in any but

the most elementary optical system. He showed that a perfect optical system can only give a

magnification equal to the ratio of the refractive indices in the object and image spaces (Figure 2.16).

For example, if object and image are both in air, the magnification can only be unity, which may not

be very useful. A plane mirror may be perfect, but a magnifying lens cannot be.

The following demonstration of Maxwell’s theorem is due to Lenz. The theorem states effectively

that if two object points A1, B1 in a medium of refractive index n1 give rise to image points A2, B2

where the refractive index is n2, the optical paths over A1B1 and A2B2 must be equal. Suppose in

Figure 2.17 the rays A1B1 and B1A1 can both pass through the optical system. They must then pass

through B2A2 and A2B2 respectively. Since both optical paths from A1 to A2 must have the same

length, and also both optical paths from B1 to B2, it follows that the optical paths n1A1B1 and n2A2B2

must be the same. Let �(AB) be the optical path length evaluated over a line segment AB. Since

C2

C1

A2

B2

B1

A1

n1 n2IndexIndex

Optical
system

Figure 2.16 Maxwell’s theorem for a ‘perfect’ system. Optical path lengths must be equal for corresponding
parts of the object and image, so that for example n1A1B1 ¼ n2A2B2

8We are assuming g 6¼ 0. The so-called afocal case, where g ¼ 0, needs separate consideration.
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�ðA1B1Þ ¼ n1A1B1 and �ðA2B2Þ ¼ n2A2B2, we have

�ðB1A2B2Þ ¼ �ðA1B1A2Þ � n1A1B1 þ n2A2B2 ð2:50Þ
�ðB1A1B2Þ ¼ �ðA1B2A2Þ þ n1A1B1 � n2A2B2: ð2:51Þ

Subtracting the bottom equation from the top, we find 0 ¼ 0� 2n1A1B1 þ 2n2A2B2. This gives

Maxwell’s theorem

A2B2

A1B1

¼ n1

n2
: ð2:52Þ

This proof appears at first sight to be very limited, since the rays AB and BA can hardly be expected

both to pass through the optical system. It may, however, be generalized by constructing a curve

similar to that in Figure 2.17 but which is made up of many segments of actual rays, and integrating

the whole path.

The simplest example of a perfect optical system is a plane mirror. A plane refracting surface, in

contrast, only approaches perfection for rays which are nearly normal to its surface; away from the

normal a bundle of rays from a single point does not form a point, or stigmatic image. A theoretical

example of a perfect refracting system, known as the ‘fish-eye’ lens,9 was invented by Maxwell; this

uses an infinite spherical lens with refractive index varying with radius in such a way that all rays

diverging from any point would converge on another point.

If in a more restricted system a single object point and its image point are specified, they can be

connected by stigmatic rays in the optical systems of Figure 2.18. The ellipsoidal mirror has the two

points as its two foci; if one point is infinitely distant, the reflector becomes the familiar paraboloid of

Figure 2.17 Lenz’s proof of Maxwell’s theorem. In a perfect system the optical paths A1B1 and A2B2 are equal

9See M. Born and E. Wolf, Principles of Optics, 2nd edn, Pergamon Press, 1980.

P1 P1P0P0

(a) (b)

Figure 2.18 Stigmatic imaging (a) in an ellipsoidal mirror, (b) in a refracting Cartesian oval
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revolution used in reflecting telescopes and car headlights. The refracting surface is the more

complicated Cartesian oval, named after Descartes.

2.11 Perfect Imaging of Surfaces

The severe restriction of the ‘perfect’ optical system, in which magnification can only be equal to the

ratio of refractive indices in the object and image spaces, does not apply if the object points are

restricted to lie on a single definite surface. This surface need not be plane, but the corresponding

image points must lie on another conjugate surface if all points are to have sharp, or stigmatic,

images.

An example of a curved but truly stigmatic imaging surface is provided by a spherical lens.

Microscope objectives commonly use such a spherical lens, but with a flat face (see e.g. Figure 3.11).

Figure 2.19 shows a homogeneous spherical lens, centre O, with radius a and refractive index n. A

point source P0 inside the lens is imaged at P1 outside the lens. All rays leaving P0 towards the left

appear to diverge from a single point P1. This is only possible when OP0 ¼ a=n and OP1 ¼ na; the

conjugate surfaces are therefore spherical.

It is, of course, not always convenient to restrict object and image surfaces to a special curve such

as a sphere, but if it is required that either or both should be plane it will be necessary to abandon the

requirement that the images should be strictly stigmatic. We therefore turn in the next section to the

description and control of imperfections in optical images.

2.12 Ray and Wave Aberrations

We have noted that a useful optical instrument can ideally only give stigmatic (sharp) images of

points on a single surface, while even under this restriction the lenses or mirrors in the instrument

cannot generally have simple spherical surfaces unless only a small bundle of paraxial rays is used to

form the image (but note the special case of the spherical lens in Figure 2.19). In spite of this it is

Figure 2.19 A spherical lens. All rays diverging from the point P0 appear to diverge from the point P1 when
OP0 ¼ a=n and OP1 ¼ na. Spheres centred on O with these radii are thus conjugate surfaces
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evident that many very useful optical instruments exist which do not conform strictly to these

conditions. The quality of their images may not be ideal, but the departures from perfection, known as

aberrations, may be tolerable for their purpose. The design of an optical system is inevitably

concerned with the calculation of the various aberrations, and with their suppression below a tolerable

level.

Aberration is minimized in cameras and other optical systems by the use of multiple lens systems,

which we briefly describe. In astronomical telescopes a near-perfect image may be spoilt by

distortions in the wavefront arriving at the telescope, due to refraction in the atmosphere; the

image may then be improved by using adaptive optics in which compensating distortions are

introduced into the optical system.

Aberration may be specified for any ray which contributes to the formation of a point image. The

distance between an ideal image point and the intersection of the ray with the image plane is called

the ray aberration. The total effect on the image is found by tracing sufficient rays from an object

point so that the spread of intensity across the image can be found. Ray aberration therefore implies

the enlargement of an ideal image point; its importance may be judged in relation to the size of the

diffraction patch which is the lower limit to the size of the image of a point object below which even

an ideal instrument cannot go (see Chapter 10). Alternatively the point image may be considered as

the centre of a convergent wave, ideally spherical but in practice departing from sphericity; the

departures are known as wave aberrations. The relation between ray and wave aberration is seen in

Figure 2.20.

Wave aberration for an object on-axis may amount to some tens of wavelengths in a good camera

lens, but it usually is less than one wavelength in an astronomical telescope. The corresponding ray

aberrations may be found by geometric ray tracing rather than by analysis of wavefronts; there is,

however, no need to draw a sharp distinction since both approaches lead to similar analytic results.

The wave aberrations offer a clearer physical picture, as set out in the next section. Ray aberrations

may be found from any pattern of wavefront aberrations by drawing ray normals from the wavefront,

as in Figure 2.20. The intensity at the nominal image point is best found from the wave aberrations,

since these give directly the pattern of waves which must be added to give the amplitude at the

image point. The efficiency with which light is concentrated into the image point increases with

decreasing wave aberration until the optical path introduced by wave aberration becomes small

compared with l.

Figure 2.20 Ray and wave aberrations. A spherical wave W leaving the point P is focused by the optical system
into a converging wave W1, which departs from the ideal spherical shape W0, centred on O. Wave aberrations are
shown as a, and ray aberrations as by (transverse), bz (longitudinal)
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2.13 Wave Aberration On-axis – Spherical Aberration

As soon as it is admitted that a particular optical instrument, such as a camera, cannot meet the ideal

of producing stigmatic images over the whole of an image, the possible range of optical designs at

once becomes infinite, as does the variety of aberration patterns over the image. A simple pattern

does, however, emerge from refraction or reflection at a spherical surface. Here the pattern of

aberrations separates into parts which depend on the angular spread of rays from a single on-axis

object, and to the width of the field containing the object (see Chapter 3 on the design of cameras). In

other words, the transverse sizes of the aperture and of the object (for a given object distance) are

basic.

Following Figure 2.21, the difference a in optical path between the axial ray and the ray

intersecting the surface at a distance y from the axis is given by

a ¼ n1AP1 þ n2AP2 � n1juj � n2jvj: ð2:53Þ

The distance y is taken for convenience as the chord length CA, so that the following geometrical

relations hold (assuming u < 0 and v > 0):

cosc ¼ y=2r ðfrom the isosceles triangleAOCÞ

AP1 ¼ ðu2 þ y2 � 2uy coscÞ1=2 ¼ �u 1þ y2

u2
� y2

ur

� �1=2

AP2 ¼ ðv2 þ y2 � 2vy coscÞ1=2 ¼ v 1þ y2

v2
� y2

vr

� �1=2

:

ð2:54Þ

The wave aberration, or difference in optical path, is then found by expanding equation (2.54) as a

power series in y2 which depends on the off-axis distance y as

a ¼ y2

2
n1 � 1

u
þ 1

r

� �
þ n2

1

v
� 1

r

� �� �
� y4

8
� n1

u

�
� 1

u
þ 1

r

� �2

þ n2

v

1

v
� 1

r

� �2�
þ terms of higher order in y:

ð2:55Þ

Index n1 Index n2

P1 P2OC

A

u

y

r

Figure 2.21 Spherical aberration at a single spherical surface. The wave aberration for a ray at a distance y from
the axis is found from the small difference between the optical paths P1AP2 and P1CP2

2.13 Wave Aberration On-axis – Spherical Aberration 43



As the radius of the aperture increases, so must the approximation in equation (2.55) be taken to

higher orders in y. For paraxial rays where y is small, only the term in y2 need be considered, and a is

zero when the first half of equation (2.55) is zero. This gives the simple formula for refraction at a

single surface (Equation (2.14), which is the relation between conjugate points). The second half of

equation (2.55) is then the spherical aberration expressed as a wave aberration. The magnitude of

spherical aberration increases as the fourth power of the aperture of a spherical refractor.

The ray passing through A is normal to the wavefront, so that its direction departs from the correct

direction AP2 by the angle between the ideal wavefront and the actual wavefront. This angle is found

from the rate of variation of wavefront aberration a with increasing y; the angular deviation of a ray at

P2 therefore varies as qa/qy, i.e. as y3 rather than y4. The transverse ray aberration by increases as the

cube of the aperture.

Example. Find the transverse and longitudinal spherical aberrations by and bz for a ray parallel to the

axis incident on a concave spherical mirror, radius of curvature R, if the ray is off-axis by a distance y

(Figure 2.22). Assuming the paraxial condition jyj � jRj, expand by; bz to lowest order in y. (Take all

of R; y; y; by; bz as signed quantities.)

Solution. With R < 0,

CA ¼ CFþ FA ¼ �R=2þ bz ð2:56Þ
by ¼ �bz tan 2y: ð2:57Þ

By dropping a perpendicular from A to CB, we see �R ¼ 2CA cos y and by equation (2.56)

bz ¼ CAþ R=2 ¼ ðR=2Þð1� 1= cos yÞ: ð2:58Þ

For small angles, cos y ’ 1� y2=2; tan 2y ’ 2y and y ’ �y=R we find

bz ¼ �Ry2=4 ¼ �y2=4R ð2:59Þ
by ¼ �bzð�2y=RÞ ¼ �y3=2R2: ð2:60Þ

Note that the powers of y in by / y3; bz / y2 are the same as in the refractive case.

A

B

θ

θ

θ b

b

z

y

y

FP, the ideal image plane

C

R

F

Figure 2.22 Transverse and longitudinal aberrations by; bz for a ray incident on a spherical mirror parallel to
the axis. FP is the ideal focal plane. The mirror’s centre of curvature is at C

44 Chapter 2: Geometric Optics



Correction of spherical aberration is achieved very simply by changing the shape of the refracting

surface. This can be made exactly correct for any chosen pair of conjugate points. Even if the surfaces

are for simplicity constrained to be spherical, a lens may be corrected very well for spherical

aberration by the ‘bending’ illustrated in Figure 2.23, where the surfaces are still spherical but have

different radii of curvature. An exact correction requires the use of aspheric surfaces, which are

frequently used to correct image distortion in optical systems. It is important to note that any

correction can only apply exactly to one particular object distance, and that objects at a different

distance will still suffer from spherical aberration.

Reflecting telescopes, and particularly the large reflector radio telescopes, commonly use apertures

with diameters of the same order as their focal lengths. It is usual to remove the spherical aberration

by making the surface a paraboloid of revolution (Figure 2.24), when the spherical aberration for an

object on the axis at infinity is exactly zero. A paraboloid of revolution does not, however, form a

perfect image for objects off the axis, and if it is intended to use an extended field of view in an

optical or radio telescope it will be necessary to consider the off-axis aberrations, which grow more

rapidly with angle for a paraboloid than for a spherical reflector. A system using a spherical mirror

which avoids spherical aberration and still produces good off-axis images is used in the Schmidt

Figure 2.23 Lenses with spherical surfaces, and with the same focal lengths, but ‘bent’ by different amounts.
Spherical aberration is minimized by using a lens shaped so that the refraction is shared roughly equally between
the two surfaces; the plane or concave surface should therefore be closest to the nearer of the object and image
points

W
F

Figure 2.24 A section through a paraboloidal reflector telescope, showing rays from a distant object
converging on the focus F. All optical paths from the wavefront W to the focus are exactly equal, so that there is
no spherical aberration for waves from a distant object
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telescope (Figure 2.25). Here a thin corrector plate located at the centre of curvature introduces a

correction to the wavefront which compensates for spherical aberration. The location at the centre of

curvature provides good compensation for a wide angle off-axis, although the focal surface is

necessarily curved.

2.14 Off-axis Aberrations

The analysis in Section 2.13 of spherical aberration for an on-axis object point may be extended to

several kinds of aberrations for an object point off-axis. The paraxial approximation involves setting

sinf ¼ f and cosf ¼ 1. This amounts to using the leading terms in the expansions

sin f ¼ f� f3

3!
þ f5

5!
� . . .

cos f ¼ 1� f2

2!
þ f4

4!
� . . .:

ð2:61Þ

Using the next higher order of approximation gives us the third-order, or Seidel, aberrations.

In the example that follows we will quote the wave aberration a, which is the difference of the

optical path length along different paths. Ray aberrations, the deviations of rays from the ideal,

paraxial image point, are then found by taking derivatives of the wave aberration.

Figure 2.26 shows several rays from an off-axis point P1 being refracted by a single spherical

interface. P2 is the location of the ideal, paraxial image. The z axis coincides with the optic axis, the

y axis is vertical, and the x axis points into the plane of the paper. Thanks to axial symmetry, rotation

of the object point P1 about the axis does not change the physical results. To make the set-up unique,

we require P1 to lie in the y; z plane. The ray P1COP2 through the centre of curvature O is a straight

line because it strikes the interface normally. This implies that points C and P2 also lie in the y; z
plane. P1COP2 functions as a non-standard optic axis; relative to it, P1 is on-axis and light emitted by

it will therefore display only spherical aberration. But relative to the original axis DBOE, the

description becomes more complex, and the various aberrations emerge.

Focal
surface

Spherical
 mirror

Corrector plate

(a) (b)

Schmidt corrector

Figure 2.25 The Schmidt corrector plate (a) retards the wave in the outer parts of the aperture, removing
spherical aberration. It is placed at the centre of curvature of a spherical mirror so that its effect is nearly
independent of the ray inclination. A practical Schmidt plate is shown in (b); this combines the corrector with a
very weak converging lens, so reducing the required overall thickness
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If �(PQ) denotes the optical path over the segment PQ, it is convenient to define the wave

aberration of point A relative to on-axis point B by aðAÞ ¼ �ðP1AP2Þ � �ðP1BP2Þ. This has the

advantage that a(A) vanishes on-axis, where A ¼ B. We can expand this in the polar coordinates of A

and the image height as follows:10

aðAÞ ¼ Csr4 þ Ccy2r3 cos yþ Cay
2
2r

2 cos2 yþ Ccfy
2
2r

2 þ Cdy
3
2r cos y: ð2:62Þ

The subscripts on the coefficients indicate the nature of the aberrations: s (spherical aberration),

c (coma), a (astigmatism), cf (curvature of the field) and d (distortion).

Let v be the axial distance of paraxial image point P2, and let the transverse rectangular coordinates

of point A be x ¼ r sin y; y ¼ r cos y. As in Section 2.13, the angular deviation between the normals

of the ideal and actual wavefronts can be found by taking a derivative of a(A). Extending this to two

dimensions, the transverse ray aberrations are given by

bx ¼ ðv=n2Þ
qaðAÞ
qx

by ¼ ðv=n2Þ
qaðAÞ
qy

:

ð2:63Þ

Figure 2.26 Off-axis aberration at a single spherical interface. (a) Several rays traced from an off-axis object
point to its paraxial image point. Point O is the centre of curvature of the interface. (b) Appearance of the
interface from the image side. An arbitrary point A is located with polar coordinates centred on the optic axis at
point B. Note that the polar angle here increases clockwise from the y axis

10See for example F. Pedrotti and L. Pedrotti, Introduction to Optics, 2nd edn., Prentice Hall, 1993, sect. 5-2,

and M. Born and E. Wolf, Principles of Optics, p. 211 et seq.
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By evaluating these (as in Problem 2.20) one can find

bx ¼ ðv=n2Þ½4Csr3 sin yþ Ccy2r2 sin 2yþ 2Ccfy
2
2r sin y�

by ¼ ðv=n2Þ½4Csr3 cos yþ Ccy2r2ð2þ cos 2yÞ þ ð2Ca þ 2CcfÞy22r cos y
þ Cdy

3
2�:

ð2:64Þ

For an object on-axis, y2 ¼ 0 and only the first terms, which go as r3, survive. These constitute the

spherical aberration already described. Coma is a wavefront distortion additional to spherical

aberration, which only appears for object points off-axis. Rays intersect the image plane in a

comet-like spread image, whose width and length increase with the square of the zonal radius r
(Figure 2.27). The typical comatic image consists of superposed circular images, successively shifted

further from the axis and focused less sharply.

Astigmatism is the result of a cylindrical wavefront aberration, which increases as the first power of

r. The effect is unfortunately familiar in many human eyes, which show astigmatism even for objects

on-axis. The focus, shown in Figure 2.27, consists of two concentrations of rays known as the focal

lines, with a blurred circular region between representing the best approximation to a point focus.

This is called the circle of least confusion.

The third term combines similar contributions from curvature of field and astigmatism. In it the

wavefront has an added curvature proportional to image height squared, showing that the focal length

of the lens changes for off-axis points. A flat object plane will then give a curved image surface. It is

usual to find curvature still present in a lens which is corrected for astigmatism; this remaining

curvature is referred to as the Petzval curvature.

Distortion represents an angular deviation of the wavefront, increasing as image height cubed. This

spreads or contracts the image, destroying the linear relation between dimensions in object and

image.

Since we know from the start that all aberrations cannot be eliminated from a useful optical system,

it becomes a matter for choice which aberrations are the most nuisance and which can most easily be

tolerated. For example, a photograph with distortion may be more displeasing to the eye than one with

some blurring due to spherical aberration or coma. An astronomical photograph might on the other

hand be required to show small symmetrical point images over the whole of a plate covering a large

Spherical
aberration

Coma

Astigmatism

Focal lines

(a)

(b)

y

x

(c)

Figure 2.27 The effects of (a) spherical aberration, (b) coma and (c) astigmatism. In (a) and (b) the circles
show the increasingly large images due to larger radii r in the optical system; in (b) these circles are displaced to
form the comatic image. Patterns (a) and (b), though shown separate, actually superpose and coincide at the
ideal image point, which is at the centre of the bull’s eye and at the vertex of the wedge

48 Chapter 2: Geometric Optics



solid angle, while it might be less important to minimize the distortion of angular scale near the edges

of the plate.

We can now appreciate Feynman’s remark that optics is either very simple (as in paraxial

approximations) or very complicated (when a compromise must be made between conflicting

aberrations). The difficult part is made easier by automatic methods of ray tracing, which can

rapidly demonstrate the performance of any optical system, however complex. Many modern camera

lenses use components with non-spherical surfaces, derived from computation programs which

optimize performance. Such computational methods nevertheless require a performance specification

and an initial outline solution, which can only be provided with a knowledge and understanding of the

basic aberration theory.

2.15 The Influence of Aperture Stops

The amount of spherical aberration introduced by an uncorrected lens or reflector system varies as the

cube of the lens aperture. If a large aperture is necessary, the aberration must be either tolerated or

corrected, but an improvement in images can obviously be made by restricting the aperture by means

of a stop. For the single purpose of restricting spherical aberration in a lens the stop would be placed

against the lens itself, but the other aberrations are also affected by the stop in ways which depend on

the separation of the stop from the lens. This is demonstrated in Figure 2.28, which shows a pencil of

rays from an off-axis point passing through an aperture stop in front of a lens.

When the aperture stop is separated from the lens the rays from an off-axis point are constrained to

pass through the outer part of the lens, as in (a). Depending on the shape of the lens, this may reduce

or increase the off-axis aberrations. In (b), rays from an off-axis point reach the lens by a shorter path

than in (a), and the magnification off-axis is therefore greater than in (a). Distortion can therefore be

controlled by the correct positioning of the aperture stop.

2.16 The Correction of Chromatic Aberration

The power of a spherical refracting surface, radius r, is given by equation (2.14) as ðn2 � n1Þ=r,
where n2 � n1 is the difference of refractive index across the surface. So far no account has been

(a) (b)

Figure 2.28 The positioning of an aperture stop. In (a) the stop is spaced away from the lens, so that off-axis
points are focused by the outer part of the lens. The shape of the lens may then be changed so that aberrations
are reduced. In (b) the same part of the lens is used for all ray inclinations. Aberrations are then less
controllable, although they will be smaller for spherical surfaces
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taken of the need to focus light of a wide range of colour by the same optical system; since refractive

index inevitably varies with the wavelength of the light, any optical system which depends on

refraction rather than reflection will behave differently for different colours. Chromatic aberration is

a measure of the spread of an image point over a range of colours. It may be represented either as a

longitudinal movement of an image plane, or as a change in magnification, but basically it is a result

of the dependence of the power of a refracting surface on wavelength. It may be compensated for by

combining lenses made of different materials.

The power of a single thin lens used in air may be written as P ¼ ðn� 1Þ=R, where

1=R ¼ 1=r1 � 1=r2. A small change of refractive index dn therefore changes the power by dP where

dP ¼ P
dn

n� 1
: ð2:65Þ

Varieties of optical glass differ quite widely in the way in which n varies with wavelength, so that it is

possible to combine two lenses with power P1 and P2 in such a way that dP1 þ dP2 ¼ 0 without at the

same time making the total power P1 þ P2 ¼ 0. Two colours separated in wavelength by dl will be

focused together when

P1

dn1
n1 � 1

þ P2

dn2
n2 � 1

¼ 0: ð2:66Þ

Since dn=ðn� 1Þ has the same sign in the visible band for all glasses, this means that P1 and P2 must

have the opposite sign, so that correcting chromatic aberration in this way reduces the power of a lens.

The powers of the two components must also be inversely proportional to the value of

ðdn=dlÞðn� 1Þ�1
for the two glasses. The two lenses may be in contact if two surfaces have the

same radii of curvature. It is advantageous to reduce the number of interfaces between glass and air,

since light is lost by partial reflection at each step in refractive index. The step between the two kinds

of glass is smaller than for interfaces between glass and air, but the advantage is lost unless the two

lenses are cemented together using a transparent glue with a refractive index approximately the same

as that for glass. Both the power and the focal plane of such an achromatic doublet can be made the

same over a range of wavelengths, or at any two widely separated wavelengths. Outside these

wavelengths, however, it will generally still suffer from some chromatic aberration.

The dispersive power of glass is often quoted in terms of refractive index at specific vacuum

wavelengths, which have traditionally been those of the three Fraunhofer lines F, D and C. (These are

prominent absorption lines in the solar spectrum.) Table 2.3 shows the refractive indices for

representative examples of crown and flint glass.

Dispersive power � is defined as

� ¼ nF � nC

nD � 1
ð2:67Þ

Table 2.3 Refractive indices for crown and flint glass

Designation Wavelength (nm) Crown glass Flint glass

F blue 486 1.5286 1.7328

D yellow 589 1.5230 1.7205

C red 656 1.5205 1.7076
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so that typical dispersive powers of crown and flint glass are respectively 1/65 and 1/29. This

definition of � extends the ratio dn=ðn� 1Þ to a finite range of wavelengths. Since the deviation of a

thin prism, by equation (2.6), is proportional to ðn� 1Þ, we can identify � as � ¼ ðyF � yCÞ=yD, i.e.
the relative angular dispersion between the C and F lines.

2.17 Achromatism in Separated Lens Systems

The eyepieces of microscopes and telescopes often use a very simple system for achromatism, using

two identical lenses separated by the focal length of one lens. The combination has a focal length

which is independent of wavelength, as shown below.

At one particular wavelength the power of two lenses, separated by a distance d, is given by

equation (2.31) as

P ¼ Pa þ Pb � dPaPb: ð2:68Þ

At a different wavelength the net change in total power is given by

dP ¼ dPa þ dPb � dðPadPb þ PbdPaÞ: ð2:69Þ

The change in total power is zero when

dPa

PaPb

þ dPb

PaPb

¼ d
dPb

Pb

þ dPa

Pa

� �
: ð2:70Þ

If the lenses are made of the same glass then dPa=Pa ¼ dPb=Pb for all wavelengths, and the

achromatic condition becomes:

1

Pa

þ 1

Pb

¼ 2d or d ¼ fa þ fb

2
: ð2:71Þ

The focal length of the doublet therefore is achromatic when the lenses are separated by half the sum

of their focal lengths. This configuration is used in the Huygens and Ramsden eyepieces of

microscopes and telescopes (see Chapter 3).

The provision of a focal length which does not vary with wavelength is not a sufficient condition to

provide completely achromatic images: the position of the principal plane can still vary with

wavelength, and so therefore will the position of the image. Fully achromatic doublets require further

optical elements; usually each of the pair is itself made as an achromatic doublet.

2.18 Adaptive Optics

The angular resolution of large optical telescopes is usually limited by turbulence in the atmosphere,

which causes random fluctuations in refractive index. Ideally the wavefront reaching the telescope

from a distant point-like source is plane over the whole aperture. Turbulence disturbs the wavefront,

so that it can only behave as a plane wave over a small width d instead of the whole aperture diameter

D. The width of the effective telescope aperture determines the angular resolution (see Chapter 10),

so that instead of angular resolution � l=D we have the larger angle � l=d. Typically d � 0:3m,
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giving a resolution limited to �1 arcsecond, even for the largest telescope apertures. It may seem

impossible to improve on this limit, apart from observing from a telescope in space, such as the

Hubble Space Telescope. Only if the atmospheric distortion can be known instantaneously, and

corrected for, can the full resolution be restored. The wavefront distortions change rapidly, typically

in less than 100 milliseconds, so that the measurement and correction have to be completed and

repeated within this short time. How can this be achieved?

The form of the wavefront distortion can be found by a simultaneous observation of a nearby bright

star, whose image will be distorted in the same way as that of the target object. For example, the

wavefront across the whole aperture may be tilted, so that both objects appear to change position. The

image movement can be detected if the bright star image falls on an array detector (see Chapter 20).

Such a wavefront tilt can be compensated by tilting a small mirror in the optical path, near the

detector. A mirror with small mass can be controlled very rapidly by a piezoelectric actuator, holding

the images of both the reference star and the target object steady.

The correction of wavefront tilt is the simplest example of adaptive optics. Further improvements

can be made by dissecting the wavefront from the reference star into a number of separate segments,

and correcting each individually for tilt, using a dissected compensating mirror. Rapid measurement

and computation are essential to such a scheme. Obviously such a technique is only applicable to

fields of view containing a sufficiently bright reference star. An artificial star can, however, be created

by shining a laser beam up through the atmosphere, when the back-scattered light from the upper

atmosphere simulates a point source. Laser light tuned to sodium atoms is used, since it is scattered

from sodium atoms in the upper atmosphere. A powerful laser beam can be pulsed on, and the

wavefront distortion measured, in about 1ms, well below the 100ms within which correction and

normal observation must be achieved.

Problem 2.1
Derive the thin lens equation (2.17) from the bending-angle approach (Section 2.2), as follows. Consider a lens

with spherical surfaces with radius of curvature R1 for the right-hand face, and R2 for the right-hand face, as in

Figure 2.29. O is the position of an object at distance u from the lens, and similarly I is an image at distance v
from the lens. We then have for a ray travelling from O to the lens at height y and angle y1 to the axis a deviation
y ¼ ðy1 þ y2Þ where y2 is the angle between the deviated ray and the optical axis. Equate this to the bending

angle of equation (2.7) and obtain the thin-lens equation.

Problem 2.2
A thin mirror which is part of a spherical surface is silvered on both sides. If an object O on the concave side is

reflected in it as a virtual image at O0, as a check on your sign convention show that an object at O0 will be

imaged correctly as a virtual image at O.

Figure 2.29 A thin converging lens (see Problem 2.1)
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Problem 2.3
Two identical plano-convex lenses are each silvered on one face only, one on the plane face and the other on the

convex face. Find the ratio of their focal lengths for light incident on the unsilvered side. (Hint: Can you model

the system as equivalent to several thin lenses in contact?)

Problem 2.4
A lens with refractive index 1.52 is submerged in carbon disulphide, which has refractive index 1.63. What

happens to its focal length?

Problem 2.5
A small fish swims along the diameter of a spherical gold fish bowl, directly towards an observer. Find how the

fish’s apparent position varies in terms of the bowl radius R and liquid refractive index n. Can the image be

inverted?

Problem 2.6
A thick lens consists of two spherical surfaces with curvature R1;R2 separated by a thickness d of material of

refractive index n. Show that the power P of the thick lens is given by P ¼ P1 þ P2 � ðd=nÞP1P2 where P1;P2

are the powers of the two surfaces. (The argument of Section 2.7 does not work here. You can use instead the

matrix algebra of Section 2.8.)

Problem 2.7
In a plane-parallel circular disc of refracting material, the refractive index nðrÞ depends only on the distance from
the axis of the disc. Following Problem 1.6, the radius of curvature of a ray nearly parallel to the axis is

R ¼ nðdn=drÞ�1
. For R < 0, it curves towards the axis, and for R > 0, away. Suppose you are designing a

converging microwave lens of radius r ¼ 1:0m, thickness T ¼ 0:34m, focal length þ4:9m, and with refractive

index 1.4 on-axis. Find the value of nðrÞ at any radius r.

Problem 2.8
A reflecting surface giving stigmatic images of two conjugate points is a paraboloid of revolution when one of

the conjugate points is on the axis and at infinity. Show that a single refracting surface between refractive indices

n1 and n2 is similarly aplanatic for an object at infinity when it is (a) an ellipsoid of revolution, (b) a hyperboloid

of revolution, depending on the sign of n2 � n1.

Problem 2.9
In geometric optics, a light ray that is reversed in direction will retrace its entire path. We know this is so because

it applies to the subsidiary processes of reflection, refraction and translation. Within the context of the matrix

method of Section 2.9, show that this inversion of the light path corresponds to changing the transfer matrix as

follows:

M ¼ a b
g d

����
����) M0 ¼ nf

n0

d �b
�g a

����
���� ð2:72Þ

Use this to locate the secondary cardinal points F2, N2, P2 based on the positions already found in Section 2.9.5

for the primary cardinal points.

Problem 2.10
In the vicinity of the optic axis, left or right side, the ellipsoidal mirror (Figure 2.18) can be closely approximated

by a spherical mirror. This kissing sphere is chosen of suitable radius R (focal length f ¼ �R=2) to match the

axial coordinate of the ellipsoid through terms of the second order in distance off-axis, and therefore reflects

light almost the same as the near-axis parts of the ellipsoid. This means our standard theory of spherical mirrors

will work well for paraxial rays reflecting off the ellipsoid. For definiteness, consider rays incident from the left.
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If the ellipsoid has major diameter 2a and eccentricity e, the foci are located at distances að1� eÞ from the vertex.

Consider an object point displaced from the focus nearer the mirror by a small distance transverse to the axis.

(a) Find R and f . (b) Does the true focal point F coincide with either of the two ellipsoidal foci? (Note that for a

mirror the object- and image-side focal points F1, F2 merge into one point F.) (c) Find the transverse

magnification Y2=Y1.

Problem 2.11
The magnification between the object and image at the foci of the ellipsoidal mirror (Figure 2.18) might be

calculated from paraxial rays reflected to either the left or the right of the foci. These evidently give different

magnifications, while symmetry apparently demands unit magnification. What is wrong with this analysis?

Problem 2.12
If a thin glass filter, thickness d and refractive index n, is inserted between a camera lens and the photographic

plate, show that the plate must be moved a distance ½ðn� 1Þ=n�d away from the lens for focus to be maintained.

Problem 2.13
The distance between an object and its image formed by a thin lens is D. The same distance is found in a second

position of the lens, when it is moved a distance x. Show that the focal length of the lens is

f ¼ D2 � x2

4D
: ð2:73Þ

Show incidentally that the minimum distance between an object and its image is 4f .

Problem 2.14
Consider a glass sphere of radius r and a narrow pencil of light parallel to the axis but off-axis by a distance ar
chosen so that the refracted ray meets the opposite side of the sphere exactly on-axis. Find a in terms of the

refractive index n. What are the allowed ranges of a and n?

Problem 2.15
Consider a glass sphere of radius r and refractive index n, concentric with the origin of the ðy; zÞ coordinate

system (Figure 2.30). A light ray is incident on the sphere from the negative z direction, with y ¼ constant, where

θ
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θ

C

P

y
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|
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n
n   =10

Figure 2.30 Ray tracing in a sphere
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jyj=r � 1, and passes completely through the sphere. Show by ray tracing that the ingoing and outgoing

rays intersect approximately on a parabola at Pðy1; y2Þ ’ ðy; ðn� 1Þy2=ðnrÞÞ. (For light incident from

the positive z direction, only the sign of z1 changes.) Since we can ignore the small quadratic term in the

paraxial limit, conclude that both principal planes of a sphere coincide with the diameter normal to the

optic axis.

Problem 2.16
Let AB be the vector displacement from point A to point B. Verify these identities for displacements among the

cardinal points:

(i) P1N1¼P2N2¼ðn0=nf � 1Þ=g, or, equivalently, N1N2 ¼ P1P2. Interpret this result.

(ii) N1F1¼ F2P2.

Problem 2.17
(a) Find the ray matrix for a spherical lens of refractive index n and radius R. (b) Verify that its determinant has

the correct value. (c) Find the values of the principal focal lengths. (d) Find the positions of all the cardinal

points, and sketch these for n ¼ 1:5. (e) Give reasoning to confirm that your result for the position of the nodal

points is the unique correct answer.

Problem 2.18
One might naively assume that the cardinal points are in the same order as the input and output planes, so that an

incident light wave passes F1, N1 and P1 before F2, N2 and P2. This exercise will illustrate that there are many

simple systems where this is false and that pairs of cardinal points can appear in reverse order.

(a) As usual, let 1¼ object side, 2¼ image side. By definition, a parallel beam on side 1 (2) is conjugate to the

focal point F2 (F1). Discuss the positions of the two focal points F1 and F2 of a diverging thin lens, and explain

how it happens that F1 and F2 are in reverse order.

(b) Using the ray matrix, equation (2.44), for two thin lenses with focal lengths fa; fb separated by distance d,

find the requirement on d such that the principal points will appear in reverse order. At the point of

transition between reverse and normal order, what is the power of the system, and where are all the cardinal

points?

Problem 2.19
A thin equiconvex lens with radii of curvature 220mm is made of crown glass with refractive indices 1.515 and

1.508 for blue and red light respectively. Find the focal length of the lens and the axial chromatic aberration. A

thin plano-concave lens of flint glass is to be used to compensate this chromatic aberration, with the concave face

towards the first lens. The refractive indices of flint glass for blue and red light are 1.632 and 1.615 respectively.

Find the required radius of curvature of the concave surface and the focal length of the combination.

Problem 2.20
A point source of light is at distance u from a concave spherical mirror, radius of curvature r, aperture 2h.

Following the method and approximations of Section 2.13, show that:

(a) the wave aberration a at the edge of the mirror is given by

a ¼ h4

4r

1

u
� 1

r

� �2

ð2:74Þ
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(b) the transverse ray aberration by is given by

by ¼ v
da

dh
¼ � h3

r

1

u
� 1

r

� �2
2

r
� 1

u

� ��1

ð2:75Þ

(c) the longitudinal ray aberration c is given by

bz ¼ � v

h
by ¼ � h2

r

1

u
� 1

r

� �2
2

r
� 1

u

� ��2

: ð2:76Þ

Problem 2.21
Find the difference in thickness across a Schmidt corrector plate (Figure 2.25), refractive index 1.4, used to

correct the spherical aberration of the previous example without moving its focal plane.

Problem 2.22
Plane-parallel light is incident normally on the vertex of a glass hemisphere with radius 70mm. If the refractive

indices for red and blue light are 1.61 and 1.63 respectively, find the axial chromatic aberration.
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3 Optical Instruments

I knew a man who, failing as a farmer,= Burned down his farmhouse for the fire insurance= And spent the

proceeds on a telescope.= To satisfy a life-long curiosity= About our place in the stars.= And how was that for

otherworldiness?

Robert Frost (1875–1963), ‘The Star Splitter’.

And besides the observations of the Moon I have observed the following in the other stars. First, that many fixed

stars are seen with the spyglass that are not discerned without it; and only this evening I have seen Jupiter

accompanied by three fixed stars, totally invisible because of their small mass.

Galileo Galilei, 7 January 1610.

By means of Telescopes, there is nothing so far distant but may be represented to our view; and by the help of

Microscopes, there is nothing so small as to escape our enquiry; hence there is a new visible World discovered to

the understanding.

Robert Hooke, Micrographia, 1665.

Optical imaging systems, of which the most important is the human eye, obtain information about an

object or a scene in three basic ways. In the eye a complete image is formed on the retina where an

array of detectors works simultaneously to send information to the brain; a conventional photographic

film or digital camera has many features analogous to those of the eye. In another group the object

may be dissected and scanned in sequential fashion, one piece at a time, by a single detector, as in a

television camera; or there may be an array of such independent detectors, each with a simple lens, as

in the multiple eyes of many insects. Finally the light from an object may be analysed to obtain its

spatial Fourier components, followed by a reconstruction either mathematically or optically, as in a

hologram; this will be the subject of Chapter 14.

In this chapter we deal with the typical image-forming instruments: the eye, the telescope, the

microscope and the camera.

3.1 The Human Eye

The human eye is a miracle of evolution, with many parts subtly adapted to their individual

purposes. The essential elements are shown in Figure 3.1. The eye is nearly spherical, about 25 mm
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in diameter. The transparent front portion, the cornea, is more sharply curved and is covered with a

tough membrane. Between the cornea and the lens is a liquid, the aqueous humour. Behind the lens

is the thin jelly-like vitreous humour, filling the volume in front of the retina, on which the image

is focused. The network of nerves from the sensitive cells of the retina is on the front surface of the

retina; it is gathered into the optic nerve which passes through the retina and the sclera, which is

the outer case of the eye. The hole in the retina may be detected as a blind spot1 in the field of

view. The iris, which gives individual eyes their distinctive pattern and colour, is an aperture stop;

it is located in front of the lens and expands or contracts in response to the light intensity.

The eye analyses light by focusing wavefronts from different directions onto different parts of the

retina. The incident wavefronts are very nearly plane; by adjusting the eye to slightly diverging

wavefronts a correct focusing can be obtained for objects as close as a limiting distance Dnear, known

as the nearest distance of distinct vision. The ability of the eye to change its effective focal length to

image objects over a range of distances is known as accommodation. In the human eye there are two

focusing elements: the cornea (Figure 3.1) has a fixed power of about 40 dioptres,2 while the lens,

which is adjustable by the surrounding ciliary muscles, brings the total power to around 60 dioptres

when relaxed for distant vision and around 70 dioptres when fully tensed for near vision. (In fish the

adjustment is achieved by moving the lens, and in some birds it is achieved by changing the surface of

the cornea.) The principal focal length within the human eye varies from about 17 mm (relaxed) to

14 mm (tensed).

The focal points (F), principal points (P) and nodal points (N) of the eye are located as shown in

Figure 3.2. The two principal points almost coincide at P, as do the nodal points at N.

Figure 3.1 The focusing system of the human eye, as seen in horizontal section, viewed from above. Most of
the refraction occurs at the front surface of the cornea, which has refractive index 1.38. The lens has a refractive
index graded from 1.41 at the centre to 1.39 at the periphery, and the refractive index of the main volume is
1.34. The focal length of the lens is adjusted by tension in the surrounding ciliary muscles. The iris adjusts the
aperture according to the available illumination

1With one eye closed, concentrate on one of a pair of spots about 6 cm apart on a card 20 cm away. Using the

left eye, the left-hand spot will disappear if the gaze is fixed on the right-hand spot. The blind spot is located

about 5 mm closer to your nose than the central axis of the eye; check that this agrees with a principal focal length

of about 17 mm.
2Power in dioptres¼ 1=f , where the focal length f is in metres.
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The lens of the human eye operates at a focal ratio (f=D) as small as 2, but is remarkably free from

spherical aberration. This is partly due to an outward gradient of refractive index from 1.41 to 1.39

within the lens while the surrounding aqueous and vitreous fluids both have an index of 1.34. Defects

are, however, common, as is evident by the number of wearers of spectacles.

The common defects of short sight (myopia) and long sight (hyperopia or hypermetropia), are

illustrated in Figure 3.3. Without correction the cornea and lens of the myopic eye bring rays from a

distant object to a focus in front of the retina (myopic eyes do on the other hand have the advantage

that they can focus on objects closer than Dnear, allowing them to resolve more detail). The hyperopic

eye cannot focus on close objects, and often not even on distant ones.

The power of the corneal surface may be corrected by a contact lens, which must add negative

power for myopia and positive power for hyperopia. The power of the combination is the sum of the

powers of the surface and the lens. The contact lens brings the focal point onto the retina, but it also

changes the magnification of the image. Fortunately the brain is able to compensate for a small

change in magnification, and it is only in severe cases needing correction in excess of about 8 dioptres

that the effect on magnification is important.

More commonly, a lens, spaced at some distance from the eye, is used as in Figure 3.3. The spacing

has an advantage: if the lens is located near the first focal point of the eye, about 16 mm in front of the
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Figure 3.2 Geometric optics of the human eye. Distances are measured from the front of the cornea
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Figure 3.3 Shortsighted (myopic) and longsighted (hyperopic) eyes, showing their correction by diverging and
converging spectacle lenses respectively
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cornea, it does not affect the magnification, giving the same scale of image with and without the lens.

This may be seen from Figure 3.4; the vertex ray from the off-axis object point Y passes without

deviation through the spectacle lens at the focal point of the eye lens, and traverses the eye parallel to

the axis reaching the retina at Y0. The position of Y 0 is unaffected by the spectacle lens, provided that

the lens is near the front focal point.

Example. Compare the power Ps of a spectacle lens at a distance s from the eye with the power Pc of

an equivalent contact lens. Consider both kinds of spectacle lens, positive and negative.

Solution. We use the ray diagram of Figure 3.5 for a distant object. We model the relaxed eye as a

thin lens located at the cornea and with a total power PE ¼ 1=fE. After passing through the

spectacle lens, the light rays appear to the eye-equivalent lens E to diverge from, or converge

towards, an object point OE. Figure 3.5 shows that the object distance is u ¼ fs � s. For both kinds

of spectacle lens, positive and negative, u has the same sign as fs. The eye-equivalent lens E

then forms an image IE on the retina at a distance b from the cornea. For a contact lens touching

the eye

PC þ PE ¼ 1=b: ð3:1Þ

For the spectacles, the thin-lens equation gives

1=v � 1=u ¼ 1=b� 1=ðfs � sÞ ¼ PE: ð3:2Þ

Subtracting the latter equation from the former, we get

PC ¼ 1=ðfs � sÞ ¼ Ps=ð1 � sPsÞ: ð3:3Þ

Given that fs � s has the same sign as fs, it follows that equivalent contact and spectacle lenses are

both positive or both negative.

It is also common to find astigmatism in on-axis images, resulting from uneven curvature of the

cornea. This can usually be corrected with anamorphic lenses, which have different powers in two

perpendicular meridians.

P

Y

P ′

Y′

Figure 3.4 A spectacle lens located at the first focal point of the eye does not affect the magnification. The
central ray from the object PY is undeviated by the lens, and forms an image P0Y0 as for a perfect eye; all other
rays from Y also reach Y0
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3.2 The Simple Lens Magnifier

The angular resolution of the eye is determined by its focal length and the separation of sensitive

elements on the retina. This geometrical resolution matches well the limit of angular resolution set by

diffraction at the iris, the aperture of the main part of the eye lens. In the centre part of the retina,

known as the macula, the sensitive elements are cones spaced about 3 mm apart, matching the angular

resolution �10 expected from an iris diameter of � 2 mm (see Chapter 10).

Figure 3.5 Light from a distant object is focused by a combination of a spectacle lens S and the eye,
represented by a single lens E: (a) longsighted; (b) shortsighted eye. (Occasionally, as here, it is convenient to
signify a thin lens with a double arrow, with arrowheads pointing outwards for a converging lens and inwards for
diverging)
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Since the angular resolution is very nearly unchangeable, it follows that the linear resolution of the

unaided eye is greatest for objects as close as possible, i.e. at the near distance Dnear; this is generally

taken to be 25 cm. Closer objects are out of focus, but if the eye is aided by a convex lens an object at

a very small distance can be focused, with a corresponding increase in linear resolution (Figure 3.6).

In wavefront terms, the lens assists the eye by converting a wavefront which is diverging sharply into

the nearly plane wave which the eye can focus unaided.

The magnification of the image depends on the position of the lens and the eye; a very large (but

distorted) image can be seen if the object is near the focal plane of the lens and the eye is some

distance from the lens. Normally the lens is close to the eye and the image is at the near point

Dnear ¼ 25 cm. The angular magnifying power mA of a simple lens used in this way is given by the

ratio of the angular size of an object, seen as an image at the near point, to its actual angular size at

the near point (Figure 3.7). If the object has height y, and using the small-angle approximation, this is

the ratio

mA ¼ yL

yO

¼ y=d

y=Dnear

¼ Dnear

d
: ð3:4Þ

If the image is viewed at the near point, we substitute image and object distances v ¼ �Dnear and

u ¼ �d into the thin-lens equation to get

1=v � 1=u ¼ 1=d � 1=Dnear ¼ P; ð3:5Þ

Magnifying
lens Eye

OO'

D

d

Figure 3.6 A simple lens L used as a magnifier. An object at O close to the eye can be focused by the eye as
though it were at a more distant point O0

O
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E

y

D

d

θ θ
L

L
O

near

L

L

Figure 3.7 The angular magnification of an object seen, with the help of a lens, as at the near point of the eye.
(For clarity, the image IL made by the lens is shown here as more distant than the near point)

62 Chapter 3: Optical Instruments



and therefore

mA ¼ 1 þ PDnear: ð3:6Þ

A typical magnifying glass has a power of 12 dioptres, so giving

mA ¼ 1 þ 12 � 0:25 ¼ 4: ð3:7Þ

When the object is placed at the focal plane of the lens, so that d ¼ f , the image is seen at infinity and

we find from equation (3.7) that mA ¼ PDnear.

Only a small magnification is available from a single lens without introducing unacceptable

aberrations. When higher powers are needed, as in the eyepieces of microscopes and telescopes, some

improvement is obtained from double lens systems, especially in reducing chromatic aberration

(Section 2.18); examples are shown in Figure 3.8. For magnifications greater than about 10 or 20 the

simple magnifier is replaced by the compound microscope.

3.3 The Compound Microscope

The simple lens magnifier of Section 3.2 provides a magnified virtual image of an object placed just

within the focal plane of the lens. The eyepiece of a compound microscope (Figure 3.9) acts in this

way on an object which is itself a magnified image, produced by an objective lens with very short

focal length. The overall magnification, which we calculate below, is approximately the product of

the two stages of magnification, amounting typically to several hundred.

The magnification of the compound microscope is calculated in two stages. First, the objective

lens forms a real image; this is then magnified further by the eyepiece (Figure 3.10). If the real

image is formed at a distance g beyond the focus F of the objective, whose power is Po, then the

magnification is �Pog (substitute z2 ¼ g; f2 ¼ f0 in equation (2.21); alternatively this may be shown

to be equal to v=u for a simple lens). The magnification of the eyepiece is ð1 þ PeDÞ (see equation

3.6), giving the overall transverse magnification as �Pogð1 þ PeDÞ; here D is the (positive) distance

that the virtual image of I (not shown) appears behind the eyepiece. The length g is known as the

optical tube length of the microscope, since it accounts for most of the length of the instrument (see

Figure 3.9).

Figure 3.8 Eyepieces used in microscopes and telescopes. In the Ramsden the upper lens, known as the field
lens, is at the first principal plane; the two lenses have the same focal length, which avoids chromatic
aberration. The Kellner and orthoscopic eyepieces have wider fields of view; chromatic aberration is reduced by
the use of different refractive indices in the doublet and triplet lenses
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The large magnification of a compound microscope implies that light leaving any point in the object

as a wide-angle divergent wavefront is converted into a narrow, nearly parallel, wavefront emerging

from the eyepiece. The objective lens is therefore designed to collect light over a large solid angle; this is

also a requirement in obtaining the maximum resolving power for detail in the object.

The design of the objective lens is crucial to the success of a microscope. Abbe showed3 that thanks

to diffraction, and ignoring aberration, the smallest distance between two points of the object that can

be resolved is approximately l=ðn sin yÞ, where y is the maximum half angle subtended at the object

by the objective, and n is the refractive index of the medium in contact with the objective lens, e.g.

oil. The lens must therefore collect the spherical wavefront emerging from an object point over as

wide an angle as possible, without aberrations which are easily introduced when rays traverse the lens

at large angles. This is achieved in a multi-element lens in which successive meniscus lenses are used

to reduce the curvature of the wavefront, as shown in Figure 3.11. The highest magnification is

obtained with an oil-immersion lens, in which the space between the specimen and the first lens

Eye

Eyepiece

Objective

4

2

3 1

Figure 3.9 Basic optics of the compound microscope. The eyepiece is a simple magnifier focused on a real
magnified image produced by the objective lens system

Figure 3.10 Magnification in the microscope

3See Chapter 13.
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surface is filled with oil with the same refractive index as the glass. The aplanatic4 spherical surfaces

of Figure 2.20 are used to form a virtual image of O0. The requirement to collect rays over a wide

angle has also been met in the reflecting microscope objective of Figure 3.12; this has the advantage

of avoiding the use of oil, while providing a large free space immediately above the object.

The performance of the objective in collecting light over a large angle is measured by its numerical

aperture NA ¼ n sin ywhere n is the refractive index of the medium in contact with the objective, e.g.

oil, and y is the half angle of the light cone entering the objective. For example, if n ¼ 1:515 and

y ¼ 55�, NA ¼ 1:515 sin 55� ¼ 1:24. In practice, numerical apertures do not exceed 1.4. Even with a

large numerical aperture a microscope can only resolve detail at a scale comparable with one

Figure 3.11 Oil-immersion microscope objective, in which a wide-angle spherical wavefront from the object O
appears to diverge from the virtual object O0. The points O, O0 correspond to the stigmatic points P0, P1 in Figure
2.19. The oil’s index matches that of the first objective lens, so that the object is observed as though within a
uniform sphere. The wavefront curvature is again reduced by a series of meniscus lenses, of which only the first is
shown

4An aplanatic surface (or lens) is one on which all rays from a point source converge to a point, or stigmatic,

image.

Figure 3.12 Reflecting microscope. This is a close relation of the Cassegrain telescope (Section 3.6)
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wavelength of the illuminating light. The electron microscope, which uses beams of electrons in place

of rays of light, is similarly restricted in resolving power by the equivalent wavelength of the

electrons and by the numerical aperture of the system.

3.4 The Confocal Scanning Microscope

A high-power conventional microscope is at a disadvantage when examining three-dimensional

objects, when well-focused parts of an object are seen overlaid by confusing out-of-focus images of

other parts at different depths. This becomes more confusing at larger magnifications and for larger

numerical apertures, when the depth of focus becomes smaller. This disadvantage is overcome in the

confocal microscope shown in Figure 3.13.

In this instrument only one point at a time is illuminated and focused to a single small electronic

detector element situated behind a pinhole stop. The signals from the detector are stored and used

later for a reconstruction of the image. The image at a particular depth is scanned either by moving

the whole microscope with its light source detector, or more simply by moving the object, in a raster

scan as in television. The scanning can be extended to different depths by refocusing. This process

may appear to be elementary and slow, but the results are spectacular. As shown by the broken rays in

Figure 3.13, light from planes away from the required focal plane is mainly spread outside the pinhole

detector, avoiding the confusion inherent in the conventional instrument. Individual sections of the

object are scanned in sequence and combined. These separate sections can be seen in Figure 3.14(a),

which shows a confocal microscope scan of a portion of a compact recording disc (CD). In this

microphotograph the pits which form the digital recording are 0.5 mm across, in tracks 1.6 mm apart.

Many spectacular microphotographs of biological subjects, such as the cell structure in Plate 1*,

have been scanned in sections and recombined in this way.

Detector

Beam 
splitter

Pinhole

Pinhole

Illumination
source

Objective
lens

Sample
Focal plane

Figure 3.13 The confocal scanning microscope. The beam splitter allows the same objective lens system to be
used for illumination and for focusing light onto the pinhole detector. Only light from the focal plane enters the
detector; the broken lines show rays from a different depth in the sample

*Plate 1 is located in the colour plate section, after page 246.
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3.5 Resolving Power; Conventional and Near-Field Microscopes

The detail which can be distinguished using a microscope with high magnification is limited by the

wave nature of light. This chapter is concerned with geometric optics, and not the resolving power of

microscopes, but we digress to explain the need for wide-angle wavefronts at microscope objectives,

and to introduce the near-field scanning optical microscope, which overcomes the limitations of

conventional microscopes.

The problem of resolving power may be simply expressed as the requirement to distinguish light

emitted by two similar point objects separated by a small distance, as in Figure 3.15(a). They are

illuminated by the same source of light, shown as an incident plane wave from below. Each radiates a

light wave in response. As in Huygens’ construction (Chapter 1), straight ahead these two waves are

indistinguishable. At a wide angle a, however, they may be sufficiently out of step to be

distinguishable: this is the reason for designing an objective with a large numerical aperture (see

Figure 3.14 Microphotographs of a portion of a compact recording disc, using a confocal scanning microscope.

(b) 

illumination

Plane
wave α

d

(a)

Laser
light

Microscope
objective

Metal coating

Glass fibre probe

100 nm

Figure 3.15 Microscope resolving power. (a) In a conventional microscope, light waves from two adjacent
sources are only distinguishable if they are collected over a wide angle; even at the largest numerical apertures
the resolution is no better than one wavelength. (b) The evanescent field within one wavelength of an object can
be probed by a scanning near-field optical microscope (SNOM); a resolution of l=10 is achievable
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Section 3.3 above). Anticipating the consideration of interference in Chapter 8, this gives an

approximate value for the minimum resolvable distance d as

d � l=2n sin a; ð3:8Þ

which is inevitably no better than about one wavelength.

This argument does not apply to the wave fields very close to the two point objects. Within a

distance of around one wavelength the electric field is dominated by components which decay rapidly

with distance and have no effect on the normal microscope. In the scanning near-field optical

microscope, or SNOM, a very fine fibre optic probe can be scanned across this near field, and is

in practice able to distinguish detail less than one-tenth of the wavelength across. As shown in

Figure 3.15(b), the scanning probe is usually the light source, and the detector is a conventional

microscope feeding a photomultiplier detector. (For an opaque object, the same probe can be used

both for illuminating the object and as a detector; this requires the use of a directional coupler in the

fibre, as described in Chapter 6.) The mechanical requirements of the SNOM are severe: the active tip

of the probe must be only some tens of nanometres across, and it must be located and maintained at a

distance of less than 100 nanometres from the surface of the object.

3.6 The Telescope

When the eye attempts to distinguish details of a distant object, it is attempting to separate nearly

plane waves which are inclined at small angles to each other. The limit of resolution can only be

improved by using an instrument which increases the angular separations of a range of plane waves.

This is the action of a telescope.

In its most familiar use, of viewing distant objects, the telescope converts parallel incident rays

from the object to parallel outgoing rays, which can be focused by a relaxed normal eye. In this case,

the object and image points are both at infinity. But parallel outgoing rays signify that the object point

coincides with a principal focal point of the system; likewise for the image point. In other words, the

principal focal points are both at infinity. Table 2.2 shows that an afocal system, i.e. one with

f1 ¼ f2 ¼ 1, has a matrix with element M21 ¼ g ¼ 0:
If a plane wave at a small angle y1 to the axis of a telescope is to emerge as a plane wave at a

larger angle y2, the refractive index at both ends being the same, then we will show that the width of

the wavefront is reduced in the ratio y1=y2. Consider the wavefronts entering and leaving a

telescope, as shown in Figure 3.16. This shows the simple astronomical telescope, using two convex

lenses with long and short focal lengths fo and fe; these lenses are called the objective and the

eyepiece.

The wavefront enters the telescope with width w1. It is at an angle y1 to the axis of the telescope,

so that the difference in optical path l across the wavefront in the diagram is l ¼ w1y1 (where a

small-angle approximation may be used). This path difference l is preserved as the wavefronts

traverse the telescope, so that the difference in angle as the wavefronts leave the telescope is

determined by l and the new width w2 of the wavefront. Again for small angles, Figure 3.16 shows

that the ratio of widths is the ratio fo=fe of the focal lengths. The angular magnification is

therefore:

y2

y1

¼ w1

w2

¼ fo

fe
: ð3:9Þ
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Figure 3.16 shows the simplest form of astronomical telescope, using two convex lenses with long

and short focal lengths fo and fe. As in a compound microscope, the eyepiece can be regarded as a

lens magnifier which is used to view an image formed by the objective. Again for small angles,

the similar triangles in Figure 3.16(a) of light rays between the lenses show that the ratio of the widths is

the ratio fo=fe of the focal lengths. Note that in any two-element telescope set for direct viewing, as

illustrated here, the distance between the lenses equals fo þ fe; this also holds when the eyepiece is a

negative lens.

Practical arrangements for telescopes giving angular magnification are shown in Figure 3.17,

which includes many of the conventional varieties of telescope. For each the figure shows the

reduction of the width of a plane wavefront. (In some optical systems, notably in laser optics, a

telescope may be used in reverse to expand rather than contract the area of a wavefront.) The

emerging wavefront may be observed directly by eye, or it may be focused by a camera onto a

photographic film or an array detector; the eyepiece may then become part of the camera. The angular

magnification of all these arrangements is given by the ratio of the widths of the plane wavefronts

entering and leaving the telescope; this is numerically equal to the ratio of the focal lengths of the two

optical elements, either lenses or mirrors, which form the objective and eyepiece elements of the

system.

A telescope also has the advantage over the eye that it can gather a larger area of plane wavefront,

so that a point source of light becomes more easily visible. It is most important not to confuse this

increase in sensitivity with the question of the visibility of a uniformly bright object with a finite size:

the surface of the Moon is no brighter as seen through a telescope, while stars which are effectively

point sources of light may easily be seen through a telescope even if they are invisible to the naked

eye. If the object is already resolved in angle by the eye, then its visibility is related to its luminance,

which is essentially the visible power emitted per unit area into unit solid angle. The luminance as

seen through the telescope cannot be greater than the original, according to a basic theorem of

photometry; there can in practice only be a loss of luminance in a telescope, due to partial reflection

at lens surfaces or to incomplete reflection at a mirror surface.

Incident beam
width w1

Incident wavefront Emergent wavefront

Emergent beam
width w2

Eyepiece

(a)

(b)

Objective

q1
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w2w1
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l

Figure 3.16 The action of a simple telescope, with convergent objective and eyepiece lenses, focal lengths fo
and fe. (a) A pencil of parallel rays from a distant source enters at angle y1 and emerges at angle y2. The
magnification of the telescope is y2=y1 ¼ fo=fe. (b) The widths of the wavefront as it enters and emerges are w1

and w2. The optical paths l are identical; the angles are small in practice, so that l ¼ w1y1 ¼ w2y2
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Example. A simple astronomical telescope has an objective with focal length fo ¼ 30 cm. What

should be the focal length fe and diameter D of the second lens to give a magnification of 15 and an

angular field of view 2� in diameter?

Solution. Magnification ¼ fo=fe ¼ 15 ¼ 30=fe: Hence fe ¼ 2 cm. Field of view is determined by the

second lens acting as a field stop. Hence by tracing rays from the boundary of the object straight

through the vertex of the objective and converting the angle to radians, we find D=ðfo þ feÞ ¼ 2p=180

giving D ¼ 11 mm.

3.7 Advantages of the Various Types of Telescope

The types of telescope in Figure 3.17 are distinguished mainly as reflecting or refracting by the use

either of mirrors or of lenses for the objective,5 and by the use of second elements with positive or

negative power. Further elements, such as a camera lens or an eyepiece, may be added to focus the

emergent wavefront. Systems such as the Galilean telescope and the Cassegrain telescope have the

advantage that they are shorter than the corresponding instruments using second elements with

Figure 3.17 The reduction in width of a wavefront in various types of telescope. The telescopes are shown
adjusted for direct viewing of the emergent beam; the emergent wave could instead be made convergent,
focusing an image on a photographic plate

5A telescope or microscope system which uses only lenses, such as the Galilean, is referred to as dioptric, and

with mirrors only as catoptric; a combination of lenses and mirrors, as in the Schmidt telescope (Figure 2.25), is

a catadioptric system.
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positive power (astronomical and Gregorian). They may, however, be unsuitable for terrestrial survey

and position measurement because they have no real image plane at which a reference scale or

graticule can be placed.

Increasing the magnification of the simple telescope in Figure 3.16 involves either reducing

the eyepiece focal length, which may introduce aberrations, or increasing the objective focal

length, which may make the telescope too long. An alternative is to introduce a diverging lens

before the primary focus, as shown in Figure 3.18. This lens, introduced by Peter Barlow in 1834,

reduces the vergence of the wavefront, and increases the magnification with only a small extension of

the telescope. A Barlow lens giving acceptable magnification �2 to �4 is often introduced in small

telescopes used by amateurs. Larger magnifications would introduce unacceptable aberrations.

The extra magnification provided by a Barlow lens may be calculated with the help of Figure 3.18.

Let the Barlow lens have a negative focal length fB and be separated by distance d from an objective

of focal length fO. The focal point of the objective is a distance u ¼ fO � d behind the Barlow lens. By

equation (2.31), the combined focal length of the objective plus Barlow is

fcom ¼ ½1=fO þ 1=fB � d=ðfOfBÞ��1 ¼ ðfB þ fO � dÞ�1
fOfB ¼ fOfB=ðfB þ uÞ: ð3:10Þ

The angular magnification of the telescope is now to be computed according to equation (3.9), but

with this combined focal length in place of fO; it is therefore larger than the magnification without the

Barlow by a factor

mB ¼ fB=ðfB þ uÞ ¼ jfBj=ðjfBj � uÞ: ð3:11Þ

It is evident that when u is near jfBj, a small displacement of the Barlow lens can lead to a large

change in mB (see Problem 3.7).

Most reflector telescope systems are axially symmetric, and consequently the secondary tends to

obstruct part of the aperture. The Herschel system uses the whole of the aperture without obstruction,

but at the cost of using the primary off-axis; it is easier to control aberrations with the more

symmetrical mirror arrangements Figure 3.17 (c), (d) and (e).

The control of aberrations has already been discussed in Chapter 2, but the detailed application to a

full telescope system becomes complicated. Modern astronomical telescopes commonly use a

Figure 3.18 Ray trace for a Keplerian telescope with Barlow diverging lens inserted. (Distances are not to
scale)
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Cassegrain system, and the control of aberrations may entail the addition of a Schmidt corrector plate

in the beam as it enters the telescope, or a corresponding asphericity of both primary and secondary.

A lens has the great advantage over a mirror that a small distortion due to gravity or uneven

temperature has no first-order effect on the optical path through it, whereas if part of a mirror bends

forward by an amount z it shortens the optical path by 2z. If nearly perfect images are required, in

which all optical paths are near equal, this means that the mounting of a large mirror must be

considered much more carefully than that of a lens. On the other hand, a mirror has no inherent

chromatic aberration, and very little light is lost at a reflection. The largest telescopes, and some of

the best survey theodolites, use mirror systems. A mirror must, of course, be used for wavelengths

where no good lens can be made, as at infrared, radio or X-ray wavelengths.

Most mirrors for optical telescopes use a thin silver or aluminium film evaporated onto glass, or

preferably onto a ceramic with near-zero thermal coefficient of expansion. Mirrors for astronomical

telescopes must be as large as possible to obtain sufficient light-gathering power; some of the largest

have been cast in a single piece up to 8 metres in diameter, as for the Gemini telescopes in Hawaii and

Chile. The mirrors of the Keck telescopes on Hawaii are even larger, with diameter 10 metres; these

are built up of hexagonal elements mounted to produce an almost complete single mirror. Orbiting

space telescopes are necessarily smaller; the diameter of the Hubble Space Telescope is 2.4 metres,

but it has of course the tremendous advantage of avoiding the effects of absorption and random

refraction in the atmosphere. For all these large-telescope mirrors the surface profile must be accurate

to a small fraction of a wavelength; this is extremely demanding both in manufacture and in the

support systems which maintain the shape in use. Errors may be hard to rectify: the Hubble Space

Telescope was launched with serious spherical aberration due to a faulty test procedure, and the

wavefront entering the cameras and spectrometers had to be corrected subsequently by special optical

systems.

Radio telescopes use a simple metal surface, fabricated or polished so that the surface profile is

correct within a small fraction of a wavelength. X-ray telescopes present a different problem: the only

efficient reflector is a polished metal surface at a grazing angle of incidence. The Wolter telescope of

Figure 3.19 uses a section of a paraboloid which is only slightly tapered, followed by a second

reflector element which is part of a hyperboloid (the combination reduces off-axis aberrations, giving

a wider field of view). X-ray telescopes in spacecraft use Wolter telescopes, often with several

concentric reflector systems so as to increase the effective collecting area. The aperture is typically

1 metre in diameter, and the focal point is several metres beyond the reflector system. Electronic

detector arrays, such as the charge-coupled detector arrays described in Chapter 20, are used to obtain

remarkably detailed images of the X-ray emission of energetic astronomical objects such as active

galactic nuclei.

Paraboloid
Hyperboloid

To on-axis focus

Figure 3.19 The Wolter X-ray telescope. The grazing incidence reflecting elements are sections of a paraboloid
followed by a section of a hyperboloid
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The attainment of the theoretical angular resolving power of telescopes (given approximately by

the ratio wavelength/diameter, see Chapter 10) depends on a number of factors. For infrared and

longer wavelengths the full theoretical resolution may be achieved, even for the largest astronomical

telescopes. In the visible region, however, atmospheric effects typically limit the resolution to around

0.3 arcseconds, while for X-ray telescopes the limitation is the accuracy of the mirror surfaces.

3.8 Binoculars

The binocular telescope, or ‘binoculars’, as used by bird-watchers and amateur astronomers, must be

one of the most widely used forms of telescope; for many people, using both eyes gives a

considerable improvement in the perception even of diffuse objects. Binoculars comprise a pair of

refracting telescopes, with objective lenses some centimetres across and with eyepieces large enough

to allow normal vision of the magnified scene. Each telescope is basically an astronomical telescope,

with internally mounted prisms to correct the inversion of the image. Let us imagine that we are to

design a binocular telescope for general use.

We know already that the magnification of a telescope focused for object and image at infinity is

given by the ratio fo=fe between the focal lengths of objective and eyepiece. A magnification of �8 is

common for binoculars: a hand-held instrument does not usually have a magnification greater than

about �8 or �10, otherwise the image cannot be held sufficiently steady without a tripod mounting.

We also know that the total amount of light entering the instrument is determined by the aperture of

the objective, and that this affects the visibility of point sources of light; a large-diameter objective is

therefore important. We now discuss the factors which determine the field of view of the binoculars,

what sorts of lenses we must use, and what determines the diameter of the eyepiece.

The eye is especially sensitive to chromatic aberration, which has the effect of colouring the edges

of objects away from the axis. Binocular objectives must therefore be carefully corrected; they are

therefore made as cemented achromatic doublets (Section 2.17). In the eyepiece a single cemented

achromatic pair is insufficient to control other aberrations over a wide field of view; practical

eyepieces usually consist of a separated pair, one of which is itself a cemented doublet. Figure 3.20(a)

(a) Telescope with Ramsden eyepiece

Exit pupil

Eye relief

Field stop

θθ 21

f 0

The Huygens eyepiece(b)

Achromatic doublet

Figure 3.20 Astronomical telescope system, as used in binoculars
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shows a simple pair in the form known as the Ramsden eyepiece. In another type of eyepiece, due to

Huygens and shown in Figure 3.20(b), the primary image falls inside the eyepiece, where a graticule

or cross-hair can be mounted; this is useful in a survey instrument such as a theodolite. (Note the

different arrangement of the front plano-convex lens, following the advantage of splitting the

refractive power evenly between the surfaces: see Figure 2.23.)

An important part of eyepiece design concerns the position of the eye. The rays from a point source

in Figure 3.20 cross the axis beyond the eyepiece; at this point they fill the exit pupil of the system.

The eye is placed at the exit pupil, which is separated from the eye lens by a distance known as the

eye relief.

The exit pupil is defined as the image of the aperture stop as viewed through the eyepiece. In the

Galilean telescope the exit pupil is inside the telescope, where the eye cannot be placed (Figure 3.21);

this is a disadvantage of the Galilean telescope, as it results in a reduced field of view.

The optimum size of the exit pupil is determined by the size of the pupil of the eye. If the

exit pupil is smaller than the eye pupil then the eye is used inefficiently since only part of the eye

pupil is illuminated. If the exit pupil is larger than the eye pupil some light is wasted and the

telescope is being used inefficiently. In practice the exit pupil should be somewhat larger than the

eye pupil so that the exact position of the eye pupil is not too critical; the binoculars are then

easier to use.

Example. A ray of light from a star makes an angle of 0.01 radians with the axis of a simple

telescope whose objective has a focal length of 50 cm and an eyepiece of focal length 2 cm. Calculate

the distance D beyond the eyepiece where the ray crosses the axis of the telescope. (This is the eye

relief.)

Solution. With the help of an undeflected ray through its vertex, we see that the objective focuses the

light at 0:01 � 50 ¼ 0:5 cm from the axis, and the light reaches the eyepiece at 0:01 � 52 ¼ 0:52 cm

from the axis. The angular magnification is 50=2 ¼ 25, so the light leaves the eyepiece at angle

0:01 � 25 ¼ 0:25 radians and crosses the axis at D ¼ 0:52=0:25 ¼ 2:08 cm. (Note that this distance,

although calculated for a specific angle of starlight, does not depend on angle. The general expression

is D ¼ ðfo þ feÞ=mA ¼ feð1 þ 1=mAÞ; where mA is the angular magnification).

Figure 3.21 The exit pupil of a Galilean telescope is the image of the objective by the eyepiece and can be
located by tracing several convenient rays
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The focal plane of eyepieces of the Ramsden type is in front of and close to the first lens. A real

image of any object at infinity exists at this point, so that in this case the angular width of the field of

view is determined by the aperture of the first lens of the eyepiece. An aperture which limits the

field in this way is known as a field stop; the first lens is therefore often called the field lens.

The angular width of the field of view is the diameter of the field lens divided by the focal length

of the objective.6 A long-objective focal length fo therefore gives a large magnification but a

small field of view. We might therefore expect to see large magnifications obtained instead by using a

small-eyepiece focal length fe. However, as we shall see, the diameter of the eyepiece is fixed by other

considerations, and reducing fe becomes difficult without introducing aberrations (recall that

aberrations of a lens tend to increase with the ratio of diameter to focal length).

Let us assume that the angular magnification is fixed at the comfortable limit of �10, and find the

diameters and focal lengths which must be used for the eyepiece and objective. We shall find that all of

these depend on our requirements for the field of view. Consider again the rays entering the eye at the

exit pupil in Figure 3.20. The angular spread of rays at this point is the angular width of the field of view

multiplied by the magnification; it is therefore a large angle, often about 50�. The eye lens must be

larger than the exit pupil to accommodate these rays, and the field lens must be somewhat larger again.

The field lens must therefore be at least 15 mm in diameter; the size of the real image at this point must

be the same size, as this lens constitutes the field stop. The field of view, which in this example would be

50� divided by the magnification of 10, is 5�,and accordingly 5� ¼ 0:087 rad ¼ 15 mm=f0 which gives

f0 ¼ 17 cm. The focal length of the eyepiece is therefore one-tenth of this, i.e. 1.7 cm.

Finally, from equation (3.9), the diameter D of the objective must, for a magnification mA, be mA

times the diameter of the exit pupil, which is usually about 4 mm to match the pupil of the eye. The

objective is therefore 40 mm in diameter. We have reached the specification in the form usually

quoted: these binoculars would be specified as 10 � 40.

Two remaining problems are solved simultaneously by the use of a pair of prisms, as seen in

Figure 3.22(a). These invert the image, so that it appears upright, and they fold the light path so

that the total length is much less than fo þ fe, the standard length of an afocal telescope. A

more compact form is the roof prism shown in Figure 3.22(b). A Galilean arrangement would of

course provide an upright image without prisms, but without folding the light path the

telescope length would be too great for anything more than the small magnification used in opera

glasses.

3.9 The Camera

Astronomical research is seldom conducted by looking through a telescope: instead an image is

formed on a photographic plate or detector array (Chapter 20), or it may be focused on the slit of a

spectrograph. The telescope then becomes a camera, which is an artificial eye; the photographic plate

is the retina and the lens of the eye is the primary lens or mirror of the telescope. A camera is usually

focused on an object at a distance large compared with the focal length of the lens; the linear size of

the image is then given directly by the product of the focal length of the lens and the angular size of

the object.

6 In some systems (see for example Problem 3.4), one should divide the diameter of the field lens by the

distance from the objective to the field lens.
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Similarly a camera may be arranged to focus on very near objects, when it becomes a photomicro-

scope. Photographic and television cameras are often provided with interchangeable sets of lenses with a

range of focal lengths, so that the scale of a picture may be selected according to the required angular

resolution; alternatively a ‘zoom’ lens may be used which is an adjustable compound lens whose focal

length can be varied over a range which may be as large as five to one. Small cameras commonly have a

lens with focal length about 40 millimetres; an astronomical telescope may have a focal length of 10

metres or more, so as to provide a sufficiently large linear scale on the photographic plate. Even with a

focal length of 10 metres an angle of 1 second of arc corresponds to only 0.05 millimetres at the focal

plane; since diffraction images smaller than 1 second of arc are obtainable in large telescopes a stellar

image usually has a microscopic scale on the image plane. The effective focal length may be adjusted by

any of the devices of Figure 3.17; we have already seen how these affect the angular scale of a pattern of

plane waves. It is in fact only necessary to change the position of the secondary lens or mirror to obtain a

real image at any desired distance. For example, the Galilean telescope may be converted into the

telephoto lens (Figure 3.23) by moving the secondary away from the primary. The advantage over the

use of a single objective lens is that a long focal length is available without a corresponding and

inconveniently long distance between the first lens and the photographic plate.

The objective lens of a camera with a wide field of view, which is required of most modern

cameras, usually consists of four or more elements. An example is shown in the single lens reflex

camera of Figure 3.24; this design, known as the Tessar, is widely used. The two main elements are

cemented pairs designed to correct for achromatism, while the outer lenses provide correction for

geometrical aberrations. In this camera the viewfinder uses the same lens, viewing the field via a

mirror which hinges out of the light path when the film is exposed. The image on a translucent screen

is seen upright through a reversing prism.

(a)

A
AB

B

(b)

Figure 3.22 (a) A pair of erecting prisms, as used in the binocular telescope. (b) The roof prism, which
performs the same function and is more compact
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A telescope or camera photographing an extended object produces an image in which we need to

know the amount of radiant power (or flux) falling on the device per unit area, which is called

irradiance (see Appendix 2). This depends on the light flux leaving unit solid angle of the source in

the direction of the observer, i.e. on the radiant intensity of the source. The irradiance of the image is

proportional to the aperture area, but it also varies inversely an s the area of the image, which is itself

proportional to the square of the focal length. The intensity on the photographic plate therefore varies

as the ratio ðf=DÞ�2
, where f=D is the familiar ‘focal ratio’, or F-number, of a camera lens; it is the

ratio of focal length f to aperture diameter D. Many compact cameras incorporate a zoom lens, which

will adjust the focal length over a range of two or three. The effect on the field of view is presented to

the photographer by adjusting the viewfinder in synchronism.

The depth of focus, which is the range of object distance over which the image is effectively in

focus, depends on the F-number. In Figure 3.25 a point object at a distance u0 forms a point image at

P, distance v from the lens, while a closer point object at u1 forms an image at v þ dv. The converging

rays form a blurred image at P with diameter d; if this is small enough the object is still effectively in

focus. The lens diameter is D, so by simple proportion

d

dv
¼ D

v
: ð3:12Þ

F1

F2

(a)

(b)

Figure 3.23 Comparison of Galilean telescope (a) and telephoto lens (b). In the telescope the diverging
secondary lens is placed so that the foci of the two lenses coincide at F1; in the telephoto lens the secondary is
moved so that a real focus F2 is located on a photographic plate

Focusing
screen

Folding
mirror

Film

Eye

Figure 3.24 A single lens reflex (SLR) camera, showing the multiple element lens and the viewfinder
arrangement
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The case for a camera focused on infinity is dealt with in Problem 3.5. More generally, and provided

that dv is small, we can find the depth of field du by differentiating the lens equation

1

v
� 1

u
¼ 1

f

du
u2

¼ dv
v2

: ð3:13Þ

After some algebra, this gives

du ¼ Fuðuþ f Þd
f 2

ð3:14Þ

where F ¼ f=D. For example, a camera with F ¼ 2:5 and focal length 5 cm focused on an object at

2 m distance (i.e. u ¼ �2 m), using film with an acceptable blurring diameter of 50 mm, will be in

focus for objects 19 cm in front of or behind the 2 m position.

A modern compact automated camera (Plate 2*) conceals from the user many sophisticated design

features. Object distance is measured by an infrared rangefinder, and luminance is measured by a

photometer, followed by automatic focusing, exposure and aperture adjustments. Digital cameras use

electronic array detectors such as the CCD (Chapter 20), with their own complex circuitry, offering

possibilities of enhanced sensitivity and spectral range and with image detail comparable with that of

the photographic plate.

3.10 Illumination in Optical Instruments

The discussion of the compound microscope started by assuming that wavefronts left the object over

a wide range of angles. The object may of course be illuminated naturally by diffuse light, but this is

often insufficient. Extra illumination must be provided, and for efficiency and good angular resolution

the light must be encouraged to leave the object in the right range of directions. This is achieved for

transparent objects by the use of a condenser, which may be a concave mirror or a lens system, as in

Figure 3.26. No great optical quality is required, since only a rough image of a diffuse source of light

Focal point P

D

d
du

n

Figure 3.25 Geometrical construction for the depth of focus

*Plate 2 is located in the colour plate section, after page 246.
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need be formed on or near the objective plane of the microscope. The total light entering the

microscope depends on the solid angle over which the condenser collects the light; the condenser

must therefore have a short focal length both for this reason and so that the object plane is well

illuminated by light traversing it over a wide range of angles.

A similar problem is encountered in projection systems and enlargers; there the requirement is

to obtain as much light as possible through a system consisting of a transparency, a projection lens

and a screen; the transparency may be the key element of a digital cinema projector. The

illumination of the transparent object must be even, but there is no requirement for illumination

over a wide range of angles. Figure 3.27(a) shows the way in which light from a small source

traverses a projection system: it is important not to confuse this diagram with the more

conventional ray diagram of Figure 3.27(b) which is concerned with the image on the screen of

a point on the transparent object. This image is formed by a narrow pencil of rays within the light

paths of Figure 3.27(a).

The condenser lens of a projector need not be an accurate high-quality component. For the

familiar ‘overhead’ projector a stepped lens is used (Figure 3.28); this is a thin sheet of glass or plastic
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Condenser
lens

Condenser
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Figure 3.26 Condenser systems for a microscope: (a) concave mirror; (b) lens system. A short focal length is
needed to collect light over a large solid angle � and to cover a wide range of angles as it enters the microscope

Figure 3.27 Illumination in a projector system. (a) The action of the condenser lens is to collect light
emerging from a small bright source over a wide angle, providing an even illumination over the transparent
object, and concentrating the light as it passes through the projector lens. (b) The projector lens forms an image
P0 of each part P of the object in a narrow pencil of rays determined by the illumination
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with an embossed array of prisms.7 The equivalent simple lens which it replaces would be an

impossibly thick and massive piece of glass, while any imperfections in the stepped lens are

unimportant.

Problem 3.1
The microscopist Antoni van Leeuwenhoek (1632–1723) used a single lens to obtain magnifications up to �200

or more. Find the diameter of a spherical glass bead which would give such a magnification. (Van Leeuwenhoek

apparently fabricated biconvex lenses of such a small diameter.) (Hint: You will need the thick-lens power

formula given in Problem 2.6.)

Problem 3.2
Show that the angular magnification MA of the astronomical telescope in Figure 3.17 can be measured by placing

a scale across the objective lens, and measuring the transverse magnification ð< 1Þ of this scale in the image

formed by the eyepiece.

Problem 3.3
The immersion technique, in which a liquid fills the space between a microscope objective and a slide cover

glass, can give improved image brightness by allowing more light to enter the objective. Calculate the

improvement which can be obtained when the objective in air accepts a cone of half angle 30� and the liquid and

glass both have refractive index 1.5.

Problem 3.4
Compare the fields of view of the Galilean and astronomical (Keplerian) telescopes of Figure 3.17, in the

following example. The objective diameters are both 2 cm, with focal lengths 20 cm, and the eyepiece diameters

are both 1 cm, with focal lengths �10 and þ10 cm respectively. Show that the magnifications are þ2 and �2

respectively, and the fields of view are 1/10 and 1/30 radians respectively. (Note that in this case the eyepiece

itself is assumed to play the role of the field stop.) Show that the exit pupil for the Keplerian telescope is outside

the eye lens.

Mirror

Fresnel lens

Projector
 lens

Lamp

Figure 3.28 Overhead projector. The light from the lamp is concentrated into the projector lens by the stepped
lens plate, known as a Fresnel lens

7The stepped lens is known as the Fresnel lens after its inventor, who was the first to use the principle in

lighthouse lenses.
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Problem 3.5
A camera focused on infinity has a depth of focus depending on the focal ratio F, the focal length f and the

acceptable image diameter d. Show that objects beyond a distance u1 are in focus, where u1 ¼ f 2=Fd. Find this

distance for F ¼ 2:5, f ¼ 5 cm, d ¼ 50 mm.

If the camera is focused on u1, what is the nearest object in focus? (Use the approximate analysis of Section 3.9)

Problem 3.6
For binoculars specified as 8 � 40, with objective focal length 15 cm and 6� field of view, what are (a) the

magnification of a distant object, (b) the focal length of the eyepiece, (c) the diameter of the exit pupil, d) the size

of the field stop?

Problem 3.7
Given a Barlow lens of focal length �75 mm, find the magnitude and the direction of the displacement needed to

change the magnification mB from �2 to �4.

Problem 3.8
(a) Show that if we add a Barlow lens of magnification mB at distance d from an objective of focal length fO, the

focal length is increased by �z ¼ ðmB � 1Þu, where u ¼ ðfO � dÞ. (b) If the Barlow has focal length fB ¼ �6 cm,

how much does the telescope length change if mB is varied from 2 to 4?
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4 Periodic and Non-periodic Waves

Fourier, Jean Baptiste Joseph (1768–1830), French mathematician . . . born Auxerre . . . son of a tailor . . . soon
distinguished himself as a student, and made rapid progress, delighting most of all, but not exclusively, in

mathematics.

Encyclopaedia Britannica, 9th edn, 1898.

Although light is emitted and absorbed in photons, which are discrete packets of energy and

momentum, the propagation of all electromagnetic radiation is determined by its wave nature;

geometric optics, described in terms of rays, is an approximation. The propagation of light, and in

particular its behaviour in interference and diffraction, must be described by the wave theory that we

develop in this chapter. We consider first a wave in any quantity, which we designate as c, which
might be the pressure in a sound wave, the height of a wave in the sea, or the amplitude of the electric

or magnetic field of a light wave.

Although the plane wave c ¼ f ðz� vtÞ, progressing in the positive z direction with velocity v, may

have any wave shape and will keep that same shape as it progresses, it is both convenient and

physically meaningful to concentrate on the simple harmonic waveform or sinusoidal wave

introduced in Chapter 1:

c ¼ A cos kðz� vtÞ: ð4:1Þ

Using the angular frequency o and adding an arbitrary phase f the wave becomes

c ¼ A cosðkz� ot þ fÞ: ð4:2Þ

Note that when f ¼ �p=2 the wave becomes the sine wave of equation (1.12).

The constants in equation (4.2) are the angular frequency o (which is 2pn where n is the

frequency), the wave number k and the phase f. A cycle of oscillation occurs at time intervals of one

period ¼ 2p=o, and at distance intervals of one wavelength l ¼ 2p=k.
The velocity of the wave is v ¼ o=k and its form at any time is a simple sine or cosine wave along

the z axis. The phase term f determines the position of the cosine wave at t ¼ 0 (Figure 4.1). Adding

�p=2 to fmakes the cosine wave into a sine wave, moving it along the z axis by a quarter wavelength.

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



We will also write the same wave in complexified form as an exponential function

~c ¼ A exp½iðkz� ot þ fÞ� ð4:3Þ

which lends itself well to analytical work, although it represents less obviously the same wave and

will require explanation in this chapter.

However it is expressed, the simple harmonic wave is a type of wave that is easily recognizable, as

for example in a sound wave composed of a single pure note, or the monochromatic light from a laser.

Familiarity with the various ways of representing and visualizing simple harmonic waves is essential

to understanding the behaviour of light.

In this chapter we introduce the representation of a simple harmonic wave mathematically by

complex exponential functions and graphically by a rotating vector known as a phasor. We show how

simple harmonic waves are added, taking account of phase; this is at the heart of interference and diff-

raction phenomena in optics.We then show how anywaveform can be built up by the addition of simple

harmonic motions, using Fourier synthesis, or separated into component parts by Fourier analysis.

4.1 Simple Harmonic Waves

Any non-trivial solution c ¼ cðz; tÞ of the one-dimensional wave equation

@2c
@z2

� 1

v2
@2c
@t2

¼ 0 ð4:4Þ

(where v is the propagation velocity) is a wave, by definition. For example, substitution of

c ¼ A cosðkz� ot þ fÞ shows it will be a solution provided k and o satisfy v ¼ o=k. Sinusoidal
functions such as this represent an idealized limit of certain quasi-monochromatic waves often found

in nature. Since equation (4.4) is linear, if we are given any two solutions c;c0, any combination of

the form ~c ¼ acþ bc0, where a; b are arbitrary complex constants, is also a solution. Suppose we

Wavelength l 2p
k

=

Velocity

Amplitude
A

z

u w
k

=

f

y

k

Figure 4.1 The progressive cosine wave c ¼ A cosðkz� ot þ fÞ at t ¼ 0
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have a real-valued monochromatic wave of the form c ¼ A cos y, where A and y ¼ kz� ot þ f are

both real. Taking c0 ¼ A sin y; a ¼ 1 and b ¼ i, we have

~c ¼ A cos yþ iA sin y ¼ Aðcos yþ i sin yÞ ¼ A expðiyÞ, ð4:5Þ

a particularly handy, complex-valued solution. (In the last member, we have used Euler’s famous

theorem on the expansion of expðiyÞ.) This wave, the complexified form of c, has an amplitude A and

phase y. The real and imaginary parts of ~c are given by A cos y ¼ Reð~cÞ; A sin y ¼ Imð~cÞ. Figure 4.2
(a) shows ~c plotted in the complex plane with Re(~c), Im(~c) as rectangular coordinates. We see that ~c
acts as a two-dimensional vector of amplitude A, and at angle y (measured anticlockwise from the

Re(~c) axis). Such a vector, which embodies the amplitude and phase of a real oscillation, is called a

phasor. When y ¼ kz� ot þ f, and z is held fixed, this phasor will rotate clockwise as time

increases. In other words, instead of oscillating sinusoidally as did the original wave, the phasor has a

much simpler motion: it rotates uniformly, its endpoint describing a circle.

The exponential form and the phasor provide a simple representation of a phase change. Expanding

c ¼ A cosðkz� ot þ fÞ, we find

c ¼ A cosf cosðkz� otÞ � A sinf sinðkz� otÞ; ð4:6Þ

a rather complicated mixing of cosines and sines. Contrast this with the exponential form

~c ¼ A exp½iðkz� ot þ fÞ� ¼ A expðifÞ exp½iðkz� otÞ�: ð4:7Þ

Here the complex wave keeps its original form and is merely multiplied by a complex constant;

correspondingly the phasor is simply rotated by the phase shift.
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(a)

(b) (c)

Figure 4.2 (a) A general phasor of amplitude A at an angle of ðkz� ot þ fÞ to the horizontal axis; (b) the
addition of phasors at z ¼ 0 and t ¼ 0 representing 3 cosðkz� otÞ and 4 sinðkz� otÞ ¼ 4 cosðkz� ot � p=2Þ
give a resultant phasor of length 5 at angle f, representing 5 cosðkz� ot þ fÞ where f ¼ � tan�1ð4=3Þ; (c) the
two waves and their resultant as a function of ot for z ¼ 0
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Superposition also becomes much simpler with the phasor picture. Phasors obey vector addition in

the complex plane. An especially simple case is one where all the phasors being superposed have the

same frequency o; as a result, they all rotate rigidly together, and their resultant has a constant

magnitude.

Example. Use phasors to evaluate the sum of cos y and cosðyþ aÞ.

Solution. The real quantity to be evaluated is c ¼ cos yþ cosðyþ aÞ. Write the complex version of

this and merge the separate terms into one:

~c ¼ expðiyÞ þ exp½iðyþ aÞ� ¼ expðiyÞ½1þ expðiaÞ�
¼ expðiyÞ expðia=2Þ½expð�ia=2Þ þ expðia=2Þ�
¼ exp½iðyþ a=2Þ�2 cosða=2Þ:

ð4:8Þ

We require the real part of this, which is 2 cosða=2Þ cosðyþ a=2Þ.

Example. Sketch a diagram showing phasors that represent the following oscillations: 2 sinot,
3 cosot, 4 cosðot þ p=4Þ: By evaluating their real (R) and imaginary (I) components at t ¼ 0, find

the amplitude and phase of the phasor representing the sum of all three.

Solution. Note that 2 sinot can be written as 2 cosðot � p=2Þ. The three phasors are 2 exp ½iðot�
p=2Þ�, 3 expðiotÞ and 4 exp½iðot þ p=4Þ�. At t ¼ 0, their sum is AR ¼ 3þ 2

ffiffiffi
2

p
¼ 5:828,

AI ¼ �2þ 2
ffiffiffi
2

p
¼ 0:828, giving A ¼ ðA2

R þ A2
I Þ

1=2 ¼ 5:887 with phase tan�1ðAI=ARÞ ¼ 8:09�.

Note that a phasor can represent any periodically varying quantity, which might itself be a scalar,

such as pressure in a sound wave, or a vector, such as the vector components Ez or Bx of an

electromagnetic wave. The phasor is a representation of the amplitude and phase of a harmonic wave.

When two or more waves at the same frequency are superposed, each with its own amplitude and

phase, the way they add depends on their relative phases: the interference between them may give an

increased or decreased amplitude. This is done algebraically by adding the complex magnitudes, but

it may be pictured by adding the corresponding phasors as vectors to produce a single phasor

representing the combination in amplitude and phase.

To summarize this important concept, we can represent a harmonic wave in amplitude and phase

by a complex number, the complex magnitude; summing the complex magnitudes for a combination

of waves gives the complex magnitude for the combined wave.

The intensity of the wave (i.e. the energy flux, also known as the ‘irradiance’ in optics) can be found

by taking the time average of the square of the wave. A constant multiplicative factor will be needed

which will depend on the details of the physical system, e.g. mechanical, electromagnetic, etc., and

the system of units: for present purposes we ignore this factor.1 For the wave c ¼ A cos y, where y is

some linear function of the time, we would calculate I ¼ hA2 cos2 yiavg ¼ A2=2; again we will

ignore the factor of one-half, and set I ¼ A2. Using the complex conjugate of the complexified wave,

1In Section 5.5, where we discuss energy flow in electromagnetism, we specify this factor precisely.
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or ~c� ¼ A expð�iyÞ, we have

I ¼ A2 ¼ ~c~c� ¼ j~cj2: ð4:9Þ

We will see in Section 4.10 that any continuous waveform can be represented as the sum of simple

cosine and sine waves. If the waveform is periodic, repeating at equal intervals of time with basic

frequency n, these will be a series of harmonics at frequencies which are integral multiples of n. If the
waveform is not truly periodic, but changes with time (and therefore with distance), then it can be

constructed from a continuous spectrum of sinusoidal waves. The mathematical link between a

waveform and its components is by way of Fourier analysis.

4.2 Positive and Negative Frequencies

As we have just seen, a typical form of a phasor is

~c ¼ A exp½iðkz� ot þ fÞ�: ð4:10Þ

The exponential frequency term expð�iotÞ represents a point at unit distance from the origin in the

complex plane, rotating clockwise around the origin o=2p ¼ n times per second. Similarly an

exponential frequency term with a plus sign rotates the phasor in the opposite direction, continually

adding phase rather than subtracting from it. Both signs are equally good mathematical representa-

tions of the same oscillation cosot, which is the real part both of expðiotÞ and of expð�iotÞ. Why

then do we bother with negative frequencies, when positive frequencies are equally useful? If we want

to represent an arbitrary function f ðtÞ by exponential components, we need frequency terms with both

positive and negative signs. A simple example is a cosine wave, where

cosot ¼ 1

2
½expðiotÞ þ expð�iotÞ� ð4:11Þ

while a sine wave is represented by

sinot ¼ 1

2i
½expðiotÞ � expð�iotÞ�: ð4:12Þ

A real-valued wave with intermediate phase, i.e. with both cosine and sine components, can be

represented by a sum such as

a cosot � b sinot ¼ 1

2
ðaþ ibÞ expðiotÞ þ 1

2
ða� ibÞ expð�iotÞ: ð4:13Þ

The two components now have complex amplitudes which are complex conjugates.

Extending this to a spectrumwith a range of frequency components, a function f ðtÞmay bewritten as

f ðtÞ ¼
Z þ1

�1
AðoÞ expðiotÞdo ð4:14Þ

where AðoÞ is the complex amplitude at frequency o.

4.2 Positive and Negative Frequencies 87



Note that for f ðtÞ to be real, Að�oÞ ¼ A�ðoÞ, and vice versa. The real and imaginary parts of the

complex AðoÞ together form the complex spectrum of the function f ðtÞ, and may be plotted on two

graphs, one for the real and one for the imaginary part. Figure 4.3 shows the spectra of three periodic

waves in this way. Notice that there is no need always to plot the negative frequency half of these

spectra, because of the conjugate property.

We need to relate the discrete spectra of equations (4.11) and (4.12), and the continuous spectrum

of equation (4.14). For this we introduce the delta function, named after the physicist P.A.M. Dirac,

who introduced it in the context of quantum mechanics. The Dirac delta function dðxÞ can be regarded
loosely as an infinitely narrow, peaked function, with peak at x ¼ 0 and with unit area. It is usually

defined as follows:

dðxÞ ¼ 0 x 6¼ 0Z b

�a

dðxÞdx ¼ 1 a; b > 0:
ð4:15Þ

It follows that for any continuous function f ðxÞZ x0þb

x0�a

f ðxÞdðx� x0Þdx ¼ f ðx0Þ: ð4:16Þ

Function f (t) Spectrum A(w)

Real

Sine

Cosine

Real

Real

Imaginary

Imaginary

Imaginary

f(t)

f(t)

f(t)

w

w

w

2p/T

2p/w0

-w0 +w0

t

t

t

T

<>

Figure 4.3 Three functions f ðtÞ and their spectra AðoÞ. The functions themselves (sino0t; coso0t; chopped
triangle) are real, but their spectra have in general both real and imaginary parts. Note that the lines of various
heights in the spectra represent delta functions with various multiplying factors. The cosine’s spectrum has only
real components, and the sine’s has only imaginary components. We assume that the chopped triangular function
keeps the same form eternally. It is then an even function, so its spectrum is real and consists of delta functions
uniformly spaced but varying in magnitude
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Some useful properties of the delta function can be found in Section 4.14. (See also Problem 4.2.)

We now see how to write down the amplitude of a sine or cosine function. Setting

AðoÞ ¼ ð1=2Þ½dðo� o0Þ þ dðoþ o0Þ� in equation (4.14) yields f ðtÞ ¼ cosðo0tÞ, and setting

AðoÞ ¼ ð2iÞ�1½dðo� o0Þ � dðoþ o0Þ� gives sinðo0tÞ. A function f ðtÞ that is an arbitrary discrete

sum of harmonic functions can be handled in a similar fashion (Problem 4.3).

4.3 Standing Waves

The simplest example of two waves with the same frequency adding with varying phase is given by

two cosine waves travelling in opposite directions adding to give an interference pattern of standing

waves. This may be seen in water waves reflected from a pond wall, or heard in sound waves; it is

often conspicuous in VHF radio (the FM band) where standing wave patterns inside a room may be

explored by moving a portable receiver. Two waves with equal amplitudes travelling in the directions

þz and �z add as

c ¼ A cosðkz� otÞ þ A cosð�kz� otÞ: ð4:17Þ

It is a useful exercise to write this as the sum of exponential terms A exp½�iðot � kzÞ�, obtaining

~c ¼ A expð�iotÞ½expð�ikzÞ þ expðikzÞ�
¼ 2A cos kz expð�iotÞ:

ð4:18Þ

Here the complex quantity ~c has amplitude 2A cos kx and phase ot. This is a wave with the same

phase everywhere at a given time, but with an amplitude varying with position z. Figure 4.4 shows the

envelope pattern of the standing wave, with the actual displacement c at intervals of one-sixteenth of

the period, i.e. at phase intervals of p/8. The amplitude of the superposition varies along the z axis as

the relative phase of the two component waves changes. If the oscillations are in phase at z ¼ 0, the

phase of one wave increases and the phase of the other decreases as kz, as indicated in Figure 4.5. The

phase reference is the phase of the oscillation at z ¼ 0. Equation (4.18) shows that the sum of the two

Figure 4.4 The oscillation in a standing wave pattern, with successive plots at intervals of one-sixteenth of the
period. The curves at phase p=2 and �p=2 constitute the envelope of the oscillation
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waves gives a maximum at z ¼ 0, falling as cos kz to zero at z ¼ l=4 and increasing to a maximum

again at z ¼ l=2. The successive minima and maxima are called nodes and antinodes.

The pattern of standing waves provides a simple example of the phasor representation of amplitude

and phase. Figure 4.5 shows the phasors for the two waves at intervals of l=8 along the z axis.

Starting at an antinode with two waves in phase at z ¼ 0 and moving to larger values of z, the phase

difference increases in steps of p=4. The sum of the two vectors decreases to zero to give the first

node, and then increases to give the next antinode at z ¼ l=2; here the phasor is seen to be rotated

through angle p compared with the first antinode, i.e. there is a phase change of p.
The standing wave pattern for waves of unequal amplitude does not have zero amplitude at the

nodes. Figure 4.6 shows the envelope of the standing wave pattern, with the phasor diagrams at

l/4 l/2

y

z

Figure 4.5 The envelope of the standing wave pattern formed by two sinusoidal waves of equal amplitudes, in
phase at z ¼ 0 and travelling in opposite directions. The phasor diagrams show the waves in phase at z ¼ 0, with
the resultant amplitude, which oscillates in a straight line, depending on the relative phase as z increases

z = l/2

z = l/4

 l/4

y

 l/2  3l/4

z = 0

(a)

(b)

z

Figure 4.6 The envelope of the standing wave pattern, with corresponding phasor diagrams (a), for waves of
unequal amplitude. The resultant phasor traces out an ellipse (b)
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intervals of l=8 along the z axis. The phasor representing the standing wave then traces an ellipse as it
varies along the x axis. The major and minor axes represent amplitudes at antinodes and nodes; for

equal amplitudes, as in Figure 4.5, the ellipse degenerates into a straight line.

4.4 Beats Between Oscillations

The addition of two oscillations with slightly different frequencies gives the effect of beating, which

is familiar in sound waves. This is closely analogous to the standing wave patterns of the previous

section, with the relative phases of two oscillations varying with time rather than with distance. The

addition of two sinusoids, one of which is smaller in amplitude and which has a slowly increasing

phase relative to the first, is shown in Figure 4.7(a). Here the phase of the larger oscillation is taken as

the reference phase, so that the phasor representing the smaller oscillation rotates; the tip of the

phasor representing the sum oscillation traces a small circle as the relative phase changes. Although

the intensity2 of the sum varies sinusoidally, the phase does not, as shown in Figure 4.7(b) and (c).

1

0.5

0

−0.5

−20

−1

20

0

4

3
2

1

A

A
m

pl
itu

de
   

   
 P

ha
se

 a
ng

le

0 π 2π
∆ω.t

3π/2

(a)

(b)

(c)

Figure 4.7 (a) The sum of two sinusoidal oscillations with different amplitudes and with a slowly changing
relative phase corresponding to slightly different frequencies, showing phasor diagrams; (b) the phase variations
relative to the phase of the larger oscillation, shown together with (c), the amplitude variations

2Denoting the sum by y ¼ expðiotÞ½1þa expði�otÞ�, the intensity yy� ¼½1þ a expði�otÞ�½1� a expði�otÞ�¼
1þ a2 þ 2a cos�ot.

4.4 Beats Between Oscillations 91



The phase reference has been taken as one of the two oscillations, with the phase of the other

increasing uniformly with time. One oscillation then has angular frequency o, and the other has

oþ�o, and the beat frequency is �o=2p. When the amplitudes are equal, a more convenient phase

reference may be taken as that of an oscillator with frequency half-way between these two, so that we

are adding angular frequencies o��o=2 and oþ�o=2. The time variation of the phasors now

looks like the spatial variation in the standing wave pattern of Figure 4.5. For equal amplitudes the

phase of the resultant is now constant for half a period, reversing at the instants of zero amplitude.

4.5 Similarities Between Beats and Standing Wave Patterns

The common use of the phasor diagram to illustrate the phenomena of beats and of standing waves

demonstrates their underlying similarity. Beats are variations of amplitude with time at one point,

whilst standing waves are variations of amplitude with position at one time. Both phenomena can in

fact be produced simultaneously in very simple circumstances. In Figure 4.8 two sources of

sinusoidal waves S1, S2 are separated by a distance of several wavelengths, so that the distances

S1X, S2X to a point X may differ by anything from zero to several wavelengths. Such a situation may

occur, for example, with two sources of sound, or with two radio transmitters. At X the two waves

add, with a phase relation that depends on the relative phase of the sources S1 and S2, and on the

difference S1X� S2X expressed in terms of the wavelength l. Beats can now be produced at X by

keeping the geometric arrangement fixed, and transmitting two different frequencies from S1 and S2.

Alternatively, the two transmitters can be set to the same frequency, and arranged to transmit exactly

in phase. Then if (S1X� S2XÞ ¼ nl the waves will arrive in phase at X, while if at another point X’

the path difference (S1X
0 � S2X

0Þ ¼ ðnþ 1
2
Þl the waves will arrive there out of phase. There is

therefore a pattern of waves resulting from the interference of the waves, with maxima and minima of

amplitude following a simple geometric pattern.

Now let the phase of S1 change slowly with respect to S2. The result can be described in two ways:

either the interference pattern is moving, or at each point there is a beat between the two transmitters.

The physical situation can be reversed, so that X represents a single source or transmitter and S1 and

S2 represent two receivers connected together in such a way that the relative phase of the two waves

they receive determines the sum of their signals. This situation occurs in optical and radio

interferometers, such as the Michelson stellar interferometer. The radio interferometer, as used in

radio astronomy, collects waves from a single radio source in two separate antennas, adding them in a

single receiver. As the Earth rotates, a celestial source moves across the interferometer, the path

difference changes, and the receiver output varies. Alternatively, in the addition of the two waves an

extra phase difference can be inserted deliberately, and if this increases steadily with time, the rate of

variation can be adjusted to compensate for the rotation of the Earth.

X
S1

S2

Figure 4.8 Waves from the two sources S1, S2 reach X by different path lengths. As X moves, it explores an
interference pattern: alternatively, if S1 and S2 transmit different frequencies beats will be heard at X
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The basic equivalence in these examples is that an addition or subtraction of phase linearly with

time in a sinusoidal oscillation is equivalent to a change of frequency.

4.6 Standing Waves at a Reflector

Standing wave patterns can most easily be demonstrated by arranging for the total reflection of a

plane wave. Following a classic experiment by O. Wiener in 1890, G. Lippmann carried out in 1891

a striking demonstration of the standing waves of light reflected by a mirror. He used a photographic

plate with very fine grain, backed with a layer of mercury to act as a smooth reflector. A plane wave

of monochromatic light, falling on the plate, formed a standing wave which could be seen in

the developed film by cutting a section at a very shallow angle. Lippmann also showed that a plate

exposed and developed in this way could be used for colour photography, since, as explained below,

light was reflected selectively according to its wavelength from the planes of silver left in the

emulsion. Coloured holographic images, which we describe in Chapter 14, are based on the same

concept of selective reflection from a three-dimensional negative, made by interference between

light beams within a photographic emulsion. In an emulsion of 20 mm thickness, since the

interference planes are separated by l=2, some 80 interference planes are formed, depending

on the wavelength. This array acts as a selective reflective filter for white light. A similar pheno-

menon of selective reflection is found in X-ray diffraction at planes of atoms within a crystal

(Chapter 11).

The Lippmann demonstration can now be repeated much more easily by using radio waves with

wavelength of a few centimetres; but it had a particular historical importance in that it showed not

merely the wave pattern but the way in which the pattern was related to the reflecting surface. The

two standing wave patterns in Figure 4.9 show the patterns obtained at two different kinds of

boundaries. This difference is well known in wind instruments: the resonant oscillations in an organ

pipe have a node at the end of the pipe for closed pipes, and an antinode for open ones. For

electromagnetic waves the relevant boundary conditions are determined by the dielectric and

magnetic properties of the material at the boundary. In 1891 it was still interesting to prove that a

metal surface, being an excellent conductor, would determine that there would be essentially zero

electric field at the surface, giving the pattern of Figure 4.9(a). The Lippmann films showed this

clearly, giving layers of silver starting one-quarter wavelength above the surface. The pattern of

y

y

z

z

(a)

(b)

Figure 4.9 Envelope of the standing wave patterns due to reflections at different types of boundary: (a) zero
amplitude at the boundary; (b) maximum amplitude at the boundary
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Figure 4.9(a) is produced by two waves out of phase by p radians at the surface, while in Figure 4.9(b)

the two waves are in phase at the surface. A property of the surface, the reflection coefficient (see

Section 5.3), determines the relation between the incident and the reflected waves.

The concepts of interference in space and in time are well illustrated in the Doppler radar system

used for measuring the speed of moving aeroplanes or automobiles, which we discuss after setting out

the theory of the Doppler effect itself.

4.7 The Doppler Effect

The Doppler effect is familiar as a change in pitch of a sound as the source or observer moves. It applies

over the whole of the electromagnetic spectrum, but for light in particular it is important on physical

scales from atomic to cosmic. On the atomic scale we shall be concerned with the spread in frequency

of spectral lines due to the thermal velocities of atoms or molecules in a gas (Chapter 12), and on the

cosmic scale we observe the redshift of spectral lines from galaxies receding, in effect,3 with velocities

comparable with the velocity of light. We shall show how the simple theory of the Doppler effect can be

refined to take account of such large velocities by incorporating the theory of special relativity.

From the point of view of a stationary observer, a source emitting n0 waves in 1 second and moving

away from the observer with velocity v will expand the n0 waves to a distance ðcþ vÞ where c is the
velocity of the waves, as in Figure 4.10. The frequency will therefore be seen by the observer as

nobs ¼
n0

1þ v=c
: ð4:19Þ

Similarly an observer moving away from a stationary source with velocity v will receive a frequency

decreased by the rate at which the observer covers wavelengths of distance. The observed frequency

is therefore

nobs ¼ n0 �
v

l0
or

nobs ¼ n0 1� v

c

� �
:

ð4:20Þ

4  3  2 1 

Figure 4.10 The Doppler effect. A moving source emits a periodic wave, represented by the broken circles. The
waves are bunched together in the direction of motion and spread out behind

3Standard cosmological theory holds the more sophisticated view that galaxies are locally at rest but they ride

on an expanding ‘fabric’ of spacetime.
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These two equations (4.19) and (4.20) are nearly identical for small velocities, but they differ

increasingly at large velocities. For light, however, unlike sound, there can be no difference between

motion of the source and motion of the observer, which must give the same Doppler shift. The two

equations are reconciled by a relativistic correction, which results from the different ways in which

the source and the observer measure frequency. Ticks of a moving clock, as compared with an

identical clock at rest, are prolonged, hence the clock goes slower. According to special relativity, any

oscillator at frequency n0, moving with velocity v relative to a stationary observer, will appear to the

observer to be oscillating at a lower frequency n1,

n1 ¼ n0 1� v2

c2

� �1=2

: ð4:21Þ

Substituting this for n0 in equation (4.19), the observed frequency becomes

nobs ¼ n0
1� v=c

1þ v=c

� �1=2

: ð4:22Þ

The same result is obtained for the moving observer, since as seen by the stationary source the

observer’s clock goes slow by the same relativistic factor. In terms of wavelength, since l ¼ c=n

lobs ¼ l0
1þ v=c

1� v=c

� �1=2

: ð4:23Þ

The full relativistic formula is essential in the context of astronomical measurements of distant

galaxies, which may be receding with velocities approaching the velocity of light. The wavelengths

lobs of spectral lines have been observed to be redshifted from their original wavelength l0 by a factor
of more than 7, corresponding to a velocity v ¼ 0:96c.

4.8 Doppler Radar

In a Doppler radar (Figure 4.11), one form of which is the radar used by police for measuring

the speed of traffic, a transmitter T sends out a constant sinusoidal wave, say with wavelength

Figure 4.11 A Doppler radar system. The reflected wave from a target receding with velocity v is at a frequency
lower by 2v=l. This is measured as a beat against the transmitted frequency
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l ¼ 3 cm (frequency n ¼ 10GHz). The reflected wave is received at R and added to part of the

transmitted wave; the relative phase of these two waves is determined by the distance TXR. If the

target X moves with velocity v, this distance changes at a rate 2v, and, for v � c, the beat frequency

from equation (4.22) will be n0ð2v=cÞ ¼ 2v=l0. For wavelength 3 cm and a velocity v ¼ 50 km per

hour ’ 14m s�1, the beat frequency is 926Hz; this may be used to give a direct reading of the

velocity of the target.

Another way of looking at the same problem is also shown in Figure 4.11, where the signal

reaching the receiver may be considered to have originated in an image T0 of the transmitter, which

moves with velocity 2v away from the radar. The beat is now between the frequency n0 and the

Doppler shifted frequency n0ð1� 2vÞ=c, giving a beat frequency 2v=l0 as before.

Example. We can give a treatment of Doppler radar that is exact for all velocities. In special

relativity theory, two successive transformations by velocity v yield a net velocity 2v=ð1þ v2=c2Þ.
This is the correct velocity of the transmitter’s image T0 relative to the receiver. Use this to obtain the

exact observed frequency and the beat frequency.

Solution. Substituting this net velocity for v in equation (4.22), we find

nobs ¼ n0
1þ v2=c2 � 2v=c

1þ v2=c2 þ 2v=c

� �1=2

¼ n0
1� v=c

1þ v=c

� �
ð4:24Þ

and

nbeat ¼ n0 � nobs ¼ n0
2v

ðcþ vÞ ¼
2v

l0ð1þ v=cÞ : ð4:25Þ

Notice that in the limit as v approaches c, the beat frequency is half that which we obtained for the

low-velocity case.

Doppler radar measurements give velocity, not distance. Distance, or range,4 is measured by the

time of flight of a reflected radar pulse, which travels at the group velocity (Section 4.16).

4.9 Astronomical Aberration

Astronomers are familiar with an effect in the propagation of light which is related to the Doppler

shift but which is purely geometrical and which does not depend on wavelength or frequency. If a

source of light appears to be in a certain direction, and if the observer then starts to move transverse

to this direction, what change does the observer see? The change is easily assessed for slower wave

motions, such as water waves seen from a moving boat, since we have only to compound the

observer’s motion with the wave motion, as in Figure 4.12. A vector difference of the two velocities

4Radar is an acronym for RAdio Detection And Ranging.
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v
!

wave � v
!

boat gives the effective motion of the waves past the boat. As for the Doppler frequency

shift, in the previous section, the calculation should include a relativistic correction if the velocities

are large, but the simple vector sum for velocity v transverse to light with velocity c gives an angular

shift y given by

tan y ¼ v

c
: ð4:26Þ

Figure 4.13 shows that vector velocity addition is unacceptable because it produces a variable

vacuum velocity for light, but that according to special relativity where light speed is always equal to

c, the correct solution is

tan y ¼ v

c
1� v2

c2

� ��1=2

ð4:27Þ

Apparent
position

Star position

Light velocity c

Observer velocity u

q

Figure 4.12 Astronomical aberration. An observer O moves transverse to a light wave with velocity c. The
vector difference of their velocities gives an angular shift y � v=c

Figure 4.13 Astronomical aberration. (a) Non-relativistic theory predicts the wrong speed for light.
(b) Relativistic theory gives the correct light speed
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which reduces to the simple relation

sin y ¼ v

c
: ð4:28Þ

The effect is observed as a periodic shift in the position of stars as the Earth follows its orbit round

the Sun, known as astronomical aberration and illustrated in Figure 4.12. The Earth’s orbit around the

Sun with a velocity v ¼ 30 km s�1 causes a maximum aberration angle of y ¼ 20 seconds of arc for

any star in the sky. Astronomical aberration was discovered by James Bradley in 1725, when he was

attempting to measure stellar parallax, a perspective effect in which the position of a star varies

according to the position of the Earth in its orbit rather than to its velocity. The discovery of

aberration was important in establishing both the finite velocity of light and the orbital motion of the

Earth.

4.10 Fourier Series

A simple harmonic oscillation with an infinite extent in time and space is an idealized concept; in

practice we deal with waves covering a range of frequencies and also travelling in various directions.

To handle these cases we need to add a spectrum of waves distributed in frequency and in angle. Both

frequency spectra and angular spectra are conveniently expressed in Fourier terminology, which we

explore first in the domain of waveform and frequency.

Figure 4.14 shows how a periodic square waveform may be built up from a harmonic series5 of

sine waves; only the odd harmonics are needed, with amplitudes 4=pn:

f ðtÞ ¼ 4

p

X
n¼1;3;5

1

n
sin

2pnt
T

� �
: ð4:29Þ

Only a small number of harmonics are needed to produce a recognizable square wave, although in

theory a sharply defined square wave requires an infinite series. Note that all the components are in

5Until now we have used the term harmonic to mean a single angular frequency o. A harmonic series is a sum

of terms with frequencies no, where n is any integer.

f(t)

t

Figure 4.14 A periodic square wave built up from a harmonic series of sine waves, including only the
fundamental with the third and fifth harmonics
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phase at the rising edge of the square wave. A different periodic wave, the sawtooth wave of

Figure 4.15, can be constructed from sine components with amplitudes an ¼ 2=pn where n is an

integer:

f ðtÞ ¼ 2

p

X5
n¼1

1

n
sin

2pnt
T

� �
: ð4:30Þ

The more components that are added, the sharper is the sawtooth waveform.

The square wave in Figure 4.14 and the sawtooth in Figure 4.15 were constructed from sine wave

harmonics. Choosing a different time origin would require a change of phase for each harmonic,

which is equivalent to the introduction of cosine wave components.

A general theorem due to Fourier states that any periodic function f ðtÞ which repeats with period T

can be expressed in terms of a constant plus a harmonic series of sine and cosine waves as

f ðtÞ ¼ 1

2
a0 þ

Xþ1

n¼1

ancos
2pnt
T

� �
þ
Xþ1

n¼1

bnsin
2pnt
T

� �
: ð4:31Þ

Building up a periodic waveform as in Figures 4.14 and 4.15 is a process of Fourier synthesis, which

consists of adding together a fundamental frequency component and harmonics of various ampli-

tudes. The derivation of the frequencies and amplitudes of the components of a periodic waveform is

Fourier analysis. This is achieved for the harmonic series of equation (4.31) as follows. The

coefficients an and bn are obtained by multiplying equation (4.31) by cosð2pnt=TÞ and sinð2pnt=TÞ
respectively and integrating over one period, any interval, t1 � t � t1 þ T :

an ¼
2

T

Z T

0

f ðtÞ cos 2pnt
T

� �
dt; bn ¼

2

T

Z T

0

f ðtÞ sin 2pnt
T

� �
dt: ð4:32Þ

Note that any constant term in f ðtÞ appears as 1
2
a0, while b0 is always zero.

In the exponential notation the Fourier series in equation (4.31) becomes

f ðtÞ ¼ 1

2
a0 þ

1

2

X1
n¼1

ðan � ibnÞ exp i
2pnt
T

� �
þ 1

2

X1
k¼1

ðak þ ibkÞ exp �i
2pnt
T

� �
: ð4:33Þ

Period T

f(t)

Time t

Figure 4.15 Sawtooth wave built up from Fourier components, including only the fundamental with the second
to fifth harmonics
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Note that we have replaced the dummy suffix n by k in the second summation. If we now write

k ¼ �n we get

f ðtÞ ¼
X1
n¼�1

An exp i
2pnt
T

� �
ð4:34Þ

where An ¼ 1
2
ðan � ibnÞ, provided that for n < 0 we define an ¼ a�n and bn ¼ �b�n. Note that if f ðtÞ

is a real-valued function, then An is the complex conjugate of A�n.

So far we have considered functions in time, and Fourier harmonic series involving time and

frequency. But we can also have periodic functions in space, such as the diffraction gratings described

in Chapter 11. Any periodic function in the space domain with period L may be represented by the

Fourier series

f ðxÞ ¼ 1

2
a0 þ

Xn¼þ1

n¼1

ancos
2pnx
L

� �
þ
Xþ1

n¼1

bnsin
2pnx
L

� �
: ð4:35Þ

The coefficients are then

an ¼
2

L

Z L

0

f ðxÞ cos 2pnx
L

� �
dx;

bn ¼
2

L

Z L

0

f ðxÞ sin 2pnx
L

� �
dx:

ð4:36Þ

This spatial form of the Fourier series and Fourier transform occurs in many areas of optics and

photonics.

4.11 Modulated Waves: Fourier Transforms

Beats and standing waves are simple examples of modulated waves, whose amplitude varies

periodically with time or space. Fourier theory also allows us to analyse non-periodic, or aperiodic,

modulation in the same way. A short burst of waves, such as a pulse of laser light, can be considered

as the sum of waves with a continuous range of frequencies rather than a single frequency. In general,

both periodic and aperiodic modulation of a cosine wave can be expressed in terms of a modulating

function gðtÞ, so that the wave is gðtÞ cosð2pn1tÞ. If the modulating function gðtÞ is a sinusoid, the

wave can be decomposed into two components with frequencies above and below n1; these would for

example be the two frequencies producing a beat at the modulating frequency. If the wave is not fully

modulated, so that the amplitude of gðtÞ does not go to zero, there are also components at �n1; the
spectrum of the modulated wave then consists of a carrier and two sidebands.

Fourier analysis is a general technique for relating the form of a variable function to its spectrum;

for example, it relates the spectrum of a sound’s intensity to its actual waveform, and it gives a precise

description of the wavelength (or frequency) components in a pulse of laser light. The relation, which

was set out in equation (4.31) for the discrete harmonic components of a periodic wave, must now be

extended to include a continuous spectrum and aperiodic modulation.

The relation between a variable f ðtÞ and its frequency spectrum FðnÞ is given by the integrals

f ðtÞ ¼
Z þ1

�1
FðnÞ expð2pintÞdn; f ðvÞ ¼

Z þ1

�1
f ðtÞ expð�2pintÞ dt ð4:37Þ
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These integrals in the time domain express the one-to-one relation between a waveform and the

infinite set of frequency components that constitute its spectrum. In the space domain, both 1/l and

the wave number k¼2p/l play roles similar to frequency. Using k, the spatial Fourier integrals

corresponding to Equation (4.37) take the compact form

f ðxÞ ¼ 1

2p

Z 1

�1
FðkÞ expðidxÞdk; FðkÞ ¼

Z 1

�1
f ðxÞ expð�ikxÞdx ð4:38Þ

These Fourier transforms apply equally well to non-periodic as to periodic variables. We apply them

first to the modulated wave gðtÞcosð2pn1tÞ, whose spectrum is found from equation (4.38) as follows:

FðnÞ ¼
Z þ1

�1
gðtÞcosð2pn1tÞexpð�2pintÞdt

¼
Z þ1

�1
gðtÞ 1

2
fexp �2piðn� n1Þt½ � þ exp �2piðnþ n1Þt½ �gdt

¼ 1

2
Gðn� n1Þ þ

1

2
Gðnþ n1Þ

ð4:39Þ

where GðnÞ is the Fourier transform of the modulating function gðtÞ.
The simplest example is the spectrum of a cosinusoidally modulated wave, as in Figure 4.16(a).

Suppose that we start with a ‘carrier wave’ of form cosð2pn1tÞ and this is modulated by

gðtÞ ¼ aþ b cosð2pnmtÞ. The full spectrum of the unmodulated wave (the carrier wave) has

components at n1 and �n1; the spectrum of the modulating cosine wave at any frequency nm
similarly has components at �nm. The resulting spectrum of the modulated wave, evaluated with help

of equation (4.51), is shown in Figure 4.16(b); there are now sidebands separated from the original

components by nm. This result is as expected from the consideration of beating between two cosine

waves, which are now seen as the sidebands on either side of the carrier.

4.12 Modulation by a Non-periodic Function

In Figure 4.17 the carrier oscillation cosð2pn1tÞ is confined by a time-limited modulation function

gðtÞ, which is shown as either a Gaussian or the abrupt top-hat function. Following equation (4.39)

−v1 − vm) (−v1 + vm) (v1 + vm)

v

+v1

(v1 − vm)

F(v)

(a)

t

F(t)

(b)
0

−v1

Figure 4.16 Cosinusoidal modulated wave (a) and its spectrum (b). The line at n ¼ 0 is the vertical axis. As in
Figure 4.3, the vertical lines at n 6¼ 0 represent delta functions
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the spectrum of either of these time-limited waves is found from the spectrum of the modulating

function. A top-hat function with height h and width b, centred on the origin at t ¼ 0, is written

gðtÞ ¼ h for � 1

2
b < t < þ 1

2
b

� �

gðtÞ ¼ 0 elsewhere:

ð4:40Þ

The Fourier integral equation (4.38) then gives the spectrum

GðnÞ ¼
Z þb=2

�b=2

h expð�2pintÞdt

¼ h

2pin
exp þ2pin

b

2

� �
� exp �2pin

b

2

� �� �

¼ hb
sinc
c

¼ hb sincc; where c ¼ pnb: ð4:41Þ

This Fourier transform of a top-hat function is a sinc function. (We shall encounter the sinc function

again in Section 10.1 on diffraction at a single slit.) Figure 4.17 shows the full spectrum of the time-

limited wave, with positive and negative components each with the shape of a sinc function. The

width of the sinc function is inversely proportional to the width of the top-hat.

The sinc function is frequently encountered in physics and in communication engineering. We shall

see later that the spectrum of a waveform abruptly started and stopped has an intrinsic width inversely

proportional to the length of the wavetrain; it also has sidebands which extend on either side of the

main spectral component. A smooth modulation, avoiding the abrupt start and stop, has a wider main

spectral component but lower sidelobes. The most important example of such a smooth modulating

function is a Gaussian. The Gaussian function in Figure 4.17 is written

gðtÞ ¼ h exp � t2

s2

� �
: ð4:42Þ

Evaluation by the same process, using the identityZ þ1

�1
expð�a2x2Þdx ¼

ffiffiffi
p

p
=a . . . ða > 0Þ ð4:43Þ

F(v)F(t)

F(t)

v

v

t

t

F(v)

0

(a)

0

(b)

Figure 4.17 A wave whose duration is limited by (a) a ‘top-hat’ function and (b) a Gaussian
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gives the spectrum

GðnÞ ¼ hs
ffiffiffi
p

p
expð�p2n2s2Þ: ð4:44Þ

The transform of a Gaussian function is therefore another Gaussian, whose width 1=ps is inversely

proportional to the original width6 s. Applying the general relation, equation (4.39) gives the spectra

shown in Figure 4.17. We see that the Gaussian modulation of an oscillation gives Gaussian spectral

lines, whose width is inversely proportional to the duration of the wavetrain. Similar analyses may be

applied to a wave limited in space, showing that the spectrum of a wave group, such as the group of

waves associated with a single particle or photon, depends on the length of the wave group. (For

spatial analysis of waves, the variable analogous to frequency used to express the spectrum is the

wave number, k ¼ 2p=l.) Extreme examples of short wave groups are found in pulsed light from

lasers, where the pulse may be only a few wavelengths long, and consequently has a very wide

spectral range (Chapter 16).

Gaussian modulating functions are also encountered in the lateral spread of concentrated light

beams, and especially those from lasers. The lateral spread of the beam is related by a Fourier

transform to the angular divergence of the beam, which is similarly described by a Gaussian function

(Section 16.2).

4.13 Convolution

We now state the convolution theorem which enables us to find the Fourier transform of a further

class of functions, those which are obtainable by convolving together two functions, say f ðtÞ and gðtÞ.
The convolution CðtÞ of two functions f ðtÞ and gðtÞ is defined by the equation

CðtÞ ¼
Z þ1

�1
f ðtÞgðt � tÞdt ¼

Z 1

�1
f ðt � tÞgðtÞdt: ð4:45Þ

This equation is often written symbolically as

CðtÞ ¼ f ðtÞ ? gðtÞ: ð4:46Þ

The convolution equation is useful in Fourier analysis of any function, whether it is of time,

distance or angle. It occurs naturally in the response of any optical instrument such as a telescope or

spectrometer which is intended to ‘resolve’ light according to either direction or wavelength; any

such instrument has a limited resolving power which inevitably modifies and degrades the image or

spectrum. For example, a photograph of a point source taken by an astronomical telescope appears to

show the light originating from an extended source, which is the result of diffraction. Let a cross-

section of this apparent source have a brightness distribution gðyÞ, called the blurring function or

point spread function. Then a photograph of an object which has an actual brightness distribution f ðyÞ
has a blurred image made by a convolution of the two functions f ðyÞ and gðyÞ. This blurred image

hðyÞ at y is made up of contributions from a range of angles covered by the blurring function.

6The ‘standard deviations’ are smaller than these ‘widths’ by a factor of
ffiffiffi
2

p
. They are, respectively, s=

ffiffiffi
2

p
for

gðtÞ and ð
ffiffiffi
2

p
psÞ�1

for GðnÞ. But their product is still a constant.
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The contribution from a point a, where the true brightness is f ðaÞ, is proportional to the blurring

function centred on the point y, i.e. gðy� aÞ. The resultant at y is the integral over a:

hðyÞ ¼
Z þ1

�1
f ðaÞgðy� aÞda ¼

Z þ1

�1
f ðy� aÞgðaÞda: ð4:47Þ

This is a convolution of the source function f ðaÞ with the point spread function gðyÞ. Notice that for
an ideal system without any blurring, gðy� aÞ ¼ dðy� aÞ, and hðyÞ ¼ f ðyÞ. Figure 4.18 illustrates

the effect of blurring on the image of a geometric object, showing also the point spread function.

We now write the Fourier transforms of the functions f ðtÞ, gðtÞ, hðtÞ as FðnÞ, GðnÞ, HðnÞ; using the

definitions of convolution and Fourier transform it can easily be shown that if hðtÞ ¼ f ðtÞ ? gðtÞ then

HðnÞ ¼ FðnÞGðnÞ: ð4:48Þ

This is the convolution theorem, which may be stated as follows:

The Fourier transform of the convolution of two functions is the product of their individual transforms.

We will apply the convolution theorem in diffraction theory (Chapter 10), where the functions f ðtÞ
etc. are replaced by amplitude distributions across a diffraction aperture; their transforms then

represent the corresponding diffraction patterns.

4.14 Delta and Grating Functions

When a single pulse becomes infinitely narrow, its transform becomes infinitely wide. It is convenient

to describe an infinitely narrow function as a delta function (see Section 4.2). We may for example

describe the envelope of a very short pulse of light travelling along an optical fibre as an

approximation to a delta function, implying that it has an almost infinitely wide spectrum and can

be used in a communication circuit with a very wide bandwidth. The broadening of the pulse as it

travels, or in the detector circuits, can be regarded as a series of convolution processes, with a

corresponding reduction in bandwidth and limitation of usefulness of the communication circuit.

Figure 4.18 Response of an optical system. The image of a sharply defined object has been blurred by the point
spread function
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The delta function itself may be thought of as a limiting case of an ordinary function, such as a

Gaussian, with unit area but zero width:

dðxÞ ¼ lim
a!1

ffiffiffi
a

p

r
expð�ax2Þ: ð4:49Þ

The delta function dðx� x0Þ is an infinitely short function centred on x0, and with unit area. The

convolution of any reasonable function f ðxÞ with a delta function takes the form

Z þ1

�1
f ðxÞdðx0 � xÞdx ¼ f ðx0Þ: ð4:50Þ

A convenient integral representation is

dðxÞ ¼ ð2pÞ�1

Z 1

�1
expðixyÞdy: ð4:51Þ

Notice that if b is any non-zero real constant, a change of variable in equation (4.51) gives the useful

identity dðbxÞ ¼ jbj�1dðxÞ.
An infinite set of uniformly spaced delta functions is known as the grating function (or comb or

shah function). For positions xn ¼ nx0 the grating function is

Xþ1

n¼�1
dðx� xnÞ: ð4:52Þ

This may be regarded as a periodic function comprising an infinite series of delta functions: it can be

shown that its Fourier transform is another grating function

FðkÞ ¼
Z þ1

�1

X
n

dðx� xnÞexpð�ikxÞdx ¼
X
n

expð�ikxnÞ ¼
2p
x0

X
n

d k � 2pn
x0

� �
: ð4:53Þ

and the latter has spikes spaced apartly 2p=x0:The periodicities in the grating function and its

transform are related inversely. Grating functions are used in the theories of the diffraction grating

(Chapter 11) and of pulsed laser light (Chapter 16).

4.15 Autocorrelation and the Power Spectrum

The full description of a spectrum must contain the amplitude and the phase of all components.

However, it is often only necessary to consider intensity (or power, or radiance, for example), which

is proportional to the square of the amplitude and contains no phase information. This intensity

distribution may also be expressed as a spectrum and is usually referred to as the power spectrum.

The power is a real quantity; for a harmonic component FðnÞ which may be a complex quantity, we

obtain the power by multiplying by the complex conjugate7 F?ðnÞ.

7The complex conjugate of Aþ iB is A� iB, and the product is A2 þ B2.
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If the signed magnitude AðtÞ of a time-varying quantity is convolved with itself, the result is the

inverse Fourier transform of its power spectrum. Although this follows from Section 4.13, the result is

so valuable that we set out a proof as follows.

Convolving a function with itself, or self-convolution without the reversed sign seen in equation

(4.45), is also known as an autocorrelation. We define the autocorrelation function �11 as

�11ðtÞ ¼
Z 1

�1
Aðt þ tÞA?ðtÞdt: ð4:54Þ

Now take the Fourier transform of this using equation (4.38) and integrate first with respect to t and
then over t:

Z
�11ðtÞ expð�2pintÞdt ¼

Z
t

Z
t

Aðt þ tÞA?ðtÞ expð�2pintÞdtdt

¼
Z
t

Z
t

A?ðtÞ expð2pintÞAðt þ tÞ exp½�2pinðt þ tÞ�dtdt

¼
Z
t

fAðtÞ expð�2pintÞg?dt:FðnÞ

¼ F?ðnÞ:FðnÞ ð4:55Þ

where all integrals extend to �1. This is the power spectrum, or power spectral density. Lastly,

performing the inverse Fourier transform of equation (4.37) on both sides of equation (4.55),

�11ðtÞ ¼
Z 1

�1
F�ðnÞFðnÞ expð2pintÞdn: ð4:56Þ

This is known as the Wiener–Khintchine theorem, which is particularly useful in finding the width

and structure of narrow spectral lines from measurement of amplitude fluctuations (see Chapters 12

and 13). Equation (4.55) is conveniently remembered as follows: the Fourier transform of the

amplitude autocorrelation is the power spectral density.

4.16 Wave Groups

Modulated waves, and in particular wave groups such as those of Figure 4.17(b), are of great importance

in many branches of physics. In view of this we now consider modulated waves in a simple physical way,

so as to illuminate the mathematical results of the Fourier approach. We start with two wave components

only. The addition of two waves travelling in theþx direction with equal amplitude a but slightly different

angular frequencies o��o=2 and wave numbers k ��k=2 is expressed as

y ¼ a exp i oþ�o
2

� �
t � k þ�k

2

� �
x

� ��
þ a exp i o��o

2

� �
t � k ��k

2

� �
x

� �	 �	

¼ a exp½iðot � kxÞ� exp i
�o t

2
��k x

2

� �� �
þ exp�i

�o t

2
��k x

2

� �� �	 �

¼ 2ia sin
�o t ��k x

2

� �
exp½iðot � kxÞ�: ð4:57Þ
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The exponential term is a wave at the centre frequency, and the sine term is a slower modulation of

the wave in time at angular frequency �o=2 and in space with wave number �k=2. The real part of
equation (4.57) is

yreal ¼ �2a sin
�o t ��k x

2

� �
sinðot � kxÞ: ð4:58Þ

The wave at the centre frequency moves as before with a velocity

v ¼ o
k
: ð4:59Þ

This is known as the phase velocity of the group. The modulation moves with a different velocity,

such that sinð�ot ��kxÞ is constant; this is known as the group velocity vg, given by the ratio

vg ¼
�o
�k

: ð4:60Þ

Any pair in a group of waves can be analysed in this way, so we may deduce that the whole group will

move with the same velocity as the sinusoidal modulation pattern. In the limit, a group must be

considered as an infinite series of waves all with angular frequencies and wave numbers near o and k.

The group velocity vg is then the derivative

vg ¼ do=dk: ð4:61Þ

Note the distinction between group velocity and the phase velocity o=k. On a graph of o versus k,

they correspond respectively to instantaneous slope ðvgÞ and average slope ðvpÞ. Since doðkÞ=dk may

vary with k, the derivative in equation (4.61) should, for greatest accuracy, be evaluated at some k0
near the middle of the spectrum.

The limitation of the duration of a wave, or the limitation of its extent in space, requires the

superposition of an infinite series. Two waves differing by �n in frequency reinforce over a time

t � 1=�n, which is the time between successive beat minima. A group lasting for time t must consist

of sinusoidal waves spread over a range �n � 1=t, so that they are in phase during the time t, and
outside this time their relative phases become large enough that they cancel each other out by

destructive interference. Similarly a limitation of a group of waves to a spatial extent of length L

implies that the group contains a range of wavelengths such that the component waves become out of

step outside the group. By analogy with �n � 1=t, the requirement is �ð1=lÞ � 1=L or l2=�l � L;

if L ¼ nl then the range of �l is given by l=�l � n.

The first measurement of the velocity of light was achieved in 1675 by Roemer, who timed the

orbital motion of the four Galilean satellites of Jupiter, and found a delay which depended on the

varying distance of Jupiter from the Earth. Later and more accurate determinations by Michelson and

by Bergstrand timed the passage of light over a terrestrial path, using either a pulse of light or a

sinusoidal modulation. The discussion above shows us that all these methods in principle measure the

group velocity. In contrast, the phase velocity can be determined from a measurement of the

wavelength of light whose frequency is known by comparison with harmonics of a standard oscillator.

Then we define vp ¼ nl. (Since the velocity of light is now regarded as a fundamental constant, this

determination is, in modern terms, a means of relating standards of time and length.)
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4.17 An Angular Spread of Plane Waves

The wave groups discussed in previous sections are limited in extent only along the direction of

travel. A wave packet describing a particle, or a simple light beam, must also have a limited extent

laterally. Can this also be regarded as a result of superposing plane waves? The longitudinal extent of

a wave group is governed by the range of wavelengths of the plane waves constituting the group: we

now show that the lateral extent is determined by a spread in wave directions rather than by a spread

in wavelength.

Consider first the addition of two plane waves, with velocity c and wavelength l, crossing at

an angle 2y, as in Figure 4.19. Along the broken lines in this figure the two waves add in phase,

making a wave progressing at velocity c sec y. This resultant wave pattern shows a cosine variation of

amplitude across the wavefront, i.e. perpendicular to the direction of propagation, with zero

amplitude half-way between the maxima on the broken lines. For small y, the maxima are separated

by a distance l=y. If we now add more pairs of waves, with the same wavelength but crossing at

different values of y, we add to the resultant wave pattern further cosine components with different

scales l=y. Following the same idea as in the longitudinal limitation of the wave group, we see

that these different scales of lateral variation can add to produce a wave limited in space transverse to

the direction of propagation.

Awavefront limited in this way to a lateral extent D requires a range of crossing waves with angles

from zero to l=D. The required distribution of wave amplitude with angle depends on the shape of

the distribution of amplitude across the wavefront: following the example of the wave group we

may expect the relation to be given again by a Fourier transform. This is explored in more detail in

Chapter 13.

Example. A harmonic plane wave propagating in any direction has the complex representation of

the form exp½iðk 	 r� otÞ�. where k ¼ ð2p=lÞ k
^
is the wave vector, and k

^
is the unit vector giving

the direction of propagation. Use this form to:

(a) find the resultant from superposing two complex plane waves that cross at angle 2y, as shown in

Figure 4.19, and

(b) find the spacing in y and z of the wave maxima.

y

z

q q

ll

Figure 4.19 Two plane waves crossing at angle 2y. The waves add in phase along the broken lines, which are
spaced by l=ð2 sin yÞ, and are always in antiphase half-way between the broken lines
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Solution. (a) The two propagation vectors that cross at angle 2y have components k� ¼ ð0;�ky; kzÞ ¼
ð0;�k sin y; k cos yÞ. We evaluate the resultant:

~c ¼ exp½iðkþ 	 r� otÞ� þ exp½iðk� 	 r� otÞ�
¼ ½expðikyyÞ þ expð�ikyyÞ� exp½iðkzz� otÞ� ð4:62Þ
¼ 2 cosðk sin yyÞ exp½iðk cos yz� otÞ�:

(b) From the preceding, we see that the wave goes through a complete cycle when a coordinate

changes by

�y ¼ 2p=ðk sin yÞ ¼ l= sin y or

�z ¼ 2p=ðk cos yÞ ¼ l= cos y:
ð4:63Þ

Problems in Fourier Analysis

Problem 4.1
Suppose a function f ðxÞ has Fourier expansion as in equation (4.14). Prove the statement in Section 4.2 that if

f ðtÞ is real, then A�ðoÞ ¼ Að�oÞ. (Hint: You can assume that if two functions are equal, f ðtÞ ¼ gðtÞ, then their

Fourier amplitudes are also equal, Af ðoÞ ¼ AGðoÞ.)

Problem 4.2
Some properties of the delta function

In what follows, assume a; b are positive constants, and that f ðxÞ is any continuous function:

(a) In the context of equation (4.14), what is the amplitude AðoÞ that generates dðtÞ?

(b) Prove that bðxÞ is an even parity function in the sense that

Z b

�a

f ðxÞ½dðxÞ � dð�xÞ�dx ¼ 0: ð4:64Þ

(c) Use integration by parts to prove that Z b

�a

f ðxÞd0ðxÞdx ¼ �f 0ðxÞ ð4:65Þ

where d0 ¼ d=dx.
(d) Prove that for any non-zero constant A

dðAxÞ ¼ jAj�1dðxÞ ð4:66Þ

in the sense that
R b
�a

f ðxÞdðAxÞdx ¼ jAj�1 R b
�a

f ðxÞdðxÞdx.

Problem 4.3
Given a complex-valued function of the form ðf ÞtÞ ¼

Pn¼1
n¼�1 An expðiontÞ, write down the amplitude AðoÞ that

corresponds to it according to equation (4.14).

Problem 4.4
Suppose that a real function FðtÞ is of even or odd parity, FðtÞ ¼ �f ðtÞ, where the upper (lower) sign represents

the even (odd) parity case. Prove that its frequency spectrum FðnÞ, as given in Section 4.11, is real for even parity
and imaginary for odd parity.
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Problem 4.5
The negative half-cycles of a sinusoidal waveform E ¼ E0 cosot are removed by a half-wave rectifier. Show that

the resulting wave is represented by the Fourier series

E ¼ E0

1

p
þ 1

2
cosot þ 2

3p
cos 2ot � 2

15p
cos 4ot þ . . .

� �
:

Show that a full-wave rectifier, which inverts the negative half-cycles, has an output

E ¼ E0

2

p
þ 4

3p
cos 2ot � 4

15p
cos4ot þ even harmonics

� �
:

Problem 4.6
A Gaussian function with height h and standard deviation s is f ðtÞ ¼ h exp½�ðt2=2s2Þ�. Show that its Fourier

transform is

FðnÞ ¼ ð2pÞ1=2sh expð�2p2n2s2Þ:

(You will require the integral
R1
�1 expð�x2Þdx ¼ p1=2:Þ

Problem 4.7
Show that the Fourier transform FðnÞ of an isosceles triangular function, centred on t ¼ 0, with height h, base

width b, is

FðnÞ ¼ hb

2

sin2 c

c2
where c ¼ pb

2
n:

Problem 4.8
A decaying wave train is represented by

f ðtÞ ¼ a exp � t

t

� �
expðio0tÞ:

Show that the Fourier transform of f ðtÞ is

F
o
2p

� �
¼ a

1=tþ iðo� o0Þ

and hence that the energy spectrum for o close to o0 is given by

F
o
2p

� �


 


2¼ a2

ð1=tÞ2 þ ðo� o0Þ2
:

Problem 4.9
(a) Find the spectrum FðnÞ for each of the functions cosð2pn0tÞ and sinð2pn0tÞ.

(b) The function illustrated in Figure 4.16(a) has the form gðtÞ cosð2pn1tÞ, where gðtÞ ¼ aþ b cosð2pnmtÞ is a
real function. Find its spectrum. Convince yourself that your spectrum agrees with Figure 4.16(b). This is an

amplitude-modulated wave. In the case depicted, gðtÞ is the more slowly varying factor ðnm � n1Þ and can

therefore be described as ‘‘modulating’’; but the spectrum obtained is valid regardless of that limitation.
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Problem 4.10
Find the spectrum of the frequency-modulated wave

f ðtÞ ¼ A cosðpt þ B cos qtÞ

when B is small.

(Hint: Expand the waveform as a power series in B cos qt, and neglect B2.) What distinguishes this spectrum

from the amplitude-modulated spectrum of problem 4.9b?

Physics Problems

Problem 4.1
Evaluate the sum y ¼ sinðkx� otÞ þ sinðkxþ ot þ aÞ. Manipulate the complexified form ~y, without the help of

trigonometric identities, to show that y ¼ 2 sinðkxþ a=2Þ cosðot þ a=2Þ.

Problem 4.2
Show that the energy in the sum of two oscillations is equal to the sum of their individual energies, provided that

they differ in frequency and a suitable time average is taken.

Problem 4.3
Demonstrate the equivalence of the following expressions for group velocity vg, when phase velocity v ¼ c=n:

vg ¼
do
dk

¼ c

nþ odn=do
¼ v � l

dv

dl
:

Problem 4.4
A plane wave propagates in a dispersive medium with phase velocity v given by

v ¼ aþ bl

where a and b are constants. Find the group velocity.

Show that any pulse modulated waveform will reproduce its shape at times separated by intervals of t ¼ 1=b,
and at distance intervals of a=b. (Hint: Consider any pair of component waves separated in wavelength by �l as

in Section 4.16.)

Problem 4.5
Calculate the group velocity for the following types of waves, given the variation of phase velocity v with

wavelength l:

(a) Surface water waves controlled by gravity: v ¼ al1=2.

(b) Surface water waves controlled by surface tension: v ¼ al�1=2.

(c) Transverse waves on a rod: v ¼ al�1.

(d) Radio waves in an ionized gas: v ¼ ðc2 þ b2l2Þ1=2.

Problem 4.6
The refractive index for electromagnetic waves propagating in an ionized gas is given by

n2 ¼ 1� o2
p=o

2

Problems 111



where op, the plasma frequency, is determined by the density of the gas. Show that the product of the group and

phase velocities is c2.

Problem 4.7 The relativistic Doppler effect

A signal received from an oscillator with frequency n moving in a space vehicle with velocity v directly away

from an observer has an apparent frequency n0 where

n0 ¼ n
1� v=c

1þ v=c

� �1=2

:

Find the difference between this and the non-relativistic value n0nr ¼ nð1� v=cÞ for an oscillator at 6GHz

moving at 6 km s�1 in the line of sight.

Find also the transverse Doppler frequency shift n� nt for a velocity of 6 km s�1 in the line of sight where

nt ¼ nð1� v2=c2Þ1=2:

Problem 4.8
Find the exact change in frequency in the Doppler radar problem by compounding two Doppler shifts: that

from sender to target, and that from target to receiver. Assume the target recedes from the sender–receiver at

speed v.

Problem 4.9
Although a good approximation at low speeds, strict vector addition of velocities is impossible within the context

of special relativity because it would lead to changes in the observed velocity of light. Instead, velocities add in a

non-linear way. Suppose, as illustrated in Figure 4.13, the two inertial frames have corresponding axes parallel,

and the moving observer, S, has velocity vx
0 relative to the resting observer, S0. Special relativity tells us that the

velocity of any particle transforms according to

vx ¼
v0x � v

1� vv0x=c
2

ð4:67Þ

vy ¼
v0yð1� v2=c2Þ1=2

1� vv0x=c
2

: ð4:68Þ

Use this to find the velocity components and speed of a light ray incident parallel to the þy0 axis as seen by the

moving observer, S.

Problem 4.10
In the solar spectrum the same Fraunhofer line at 600 nm appears at wavelengths differing by 0.004 nm

at the pole and at the edge of the disc near the equator. Find the velocity at the equator, and deduce the

rotation period, given that the Sun’s distance is 500 light-seconds and that it subtends an angle of 320 at

the Earth.

Problem 4.11
The Crab Pulsar emits a precisely periodic pulse train whose frequency is close to 30Hz. It lies in a direction

close to the ecliptic plane, in which the Earth orbits round the Sun. Calculate the peak-to-peak variation in the

observed pulse frequency due to the Earth’s annual motion given that the Sun’s distance from the Earth is 500

light-seconds.
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Problem 4.12
The mean radius of the orbit of the Earth is 1:5
 1011 m. Find the amplitudes of astronomical parallax and

aberration for a star at a distance of 10 light-years situated in the plane of the orbit. What is the phase relation

between these two periodic motions?

Problem 4.13
A ray of light falls at angle of incidence i on a mirror surface moving normally to its surface with a velocity v
small compared with c. Use Huygens’ construction to show that the angle of reflection r differs from i by

approximately ð2v=cÞi for small i.
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5 Electromagnetic Waves

The ether, this child of sorrow of classical mechanics.

Max Planck, quoted by Jean-Pierre Luminet in Black Holes.

Light is always propagated in empty space with a definite velocity c which is independent of the state of motion of

the emitting body.

A. Einstein.

The wave theory of light, which was applied so successfully in the nineteenth century to the

phenomena of propagation, interference and diffraction, was naturally thought of in the same way as

water waves and sound waves, which were obviously waves in a medium. Maxwell showed that light

was an electromagnetic wave. But what was the medium through which light propagated? The ether,

as it was called, had no observable properties. Attempts to detect it by measuring the motion of the

Earth through it all failed, and it became clear that the description of electromagnetic waves did not

depend in any way on the existence of the ether. Maxwell’s equations, which are the basis of our

understanding of electromagnetic waves, are relations between electric and magnetic fields, and not

between these fields and some all-pervading medium.

In this chapter we first show how electromagnetic waves may be derived from the fundamental

laws of electricity and magnetism, as formulated in Maxwell’s equations.1 We then consider the flow

of energy in an electromagnetic wave, and what happens when an electromagnetic wave meets a

boundary, where it may be partly reflected and partly transmitted, depending on the materials at the

boundary, the angle of incidence of the wave and its polarization.

What happens to photons at a partially reflecting boundary? The question is meaningless for an

individual photon: if light is regarded as a stream of photons, wave theory gives the probability that

photons will be reflected or transmitted. The transport of energy by the photons averages to that of the

classical electromagnetic wave, and the momentum associated with a photon leads to a radiation

pressure at an interface between media. These are examples of the dual nature of light; only the

quantum picture, however, can account for the wavelength shift of Compton scattering or for the

spectrum of blackbody radiation, which we consider at the end of this chapter.

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd

1We use electromagnetic SI units throughout.



5.1 Maxwell’s Equations

We start with the set of four equations, known as Maxwell’s equations, which encapsulate the basic

laws of classical electrodynamics.2 They relate electric and magnetic fields to two different kinds of

sources: first by charges and currents, and second through induction, in which a changing magnetic

field induces an electric field and a changing electric field induces a magnetic field. Both the variables

in an electromagnetic wave, the electric and magnetic fields E and B, are vector quantities, and we

use vector notations throughout. We confine our analysis to isotropic and homogeneous materials, and

mainly to non-conducting materials with linear properties. The full Maxwell’s equations in vector

form3 are

divD ¼ r; divB ¼ 0

curlE ¼ � @B

@t
; curlH ¼ Jþ @D

@t
:

ð5:2Þ

Here r is the free charge density and J the free current density; in most of optics r and J are zero

and the medium is non-magnetic. The vector fields D and H are needed for material media that

show electric and magnetic polarization in the presence of external fields. In this book, we deal

mainly with linear isotropic media where D ¼ EE and B ¼ mH; E is the dielectric constant of the

medium, and m is the magnetic permeability. In vacuum, the permittivity E and (magnetic)

permeability m reduce to E0 ¼ 8:854 � 10�12 F m�1 (farad per metre, the so-called electric constant)

and to m0 ¼ 4p� 10�7 H m�1 (henry per metre, the magnetic constant); E and m are conveniently

expressed by their values relative to vacuum, namely Er ¼ E=E0; mr ¼ m=m0. The relative permittivity,

Er, is also known as the dielectric constant.

An electromagnetic field tends to polarize any medium it permeates, producing an instantaneous

distribution of electric and magnetic dipoles. The electric dipole moment per unit volume is called

the electric polarization and equals P ¼ D� E0E ¼ E0weE. The magnetic dipole volume density is

called the magnetization M and is given by m0M ¼ B� m0H ¼ m0wmH. (We meet the polarization

again in Chapters 16 and 19, where it plays major roles in the theories of light propagation and

scattering.)

2See for example I.S. Grant and W.R. Phillips, Electromagnetism, 2nd edn, John Wiley & Sons, Ltd, 1990.
3In Cartesian coordinates the divergence and curl of a vector F are

divF ¼ r � F ¼ @Fx

@x
þ @Fy

@y
þ @Fz

@z
ð5:1Þ

curlF ¼ r ^ F

¼ x̂
@Fz

@y
� @Fy

@z

� �
þ ŷ

@Fx

@z
� @Fz

@x

� �
þ ẑ

@Fy

@x
� @Fx

@y

� �

where x̂; ŷ; ẑ are unit vectors in the x; y; z directions.
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In terms of the E and B fields, the four Maxwell’s equations within a uniform medium become

divE ¼ r
E
; divB ¼ 0

curlE ¼ � @B

@t
; curlB ¼ Em

@E

@t
þ mJ:

ð5:3Þ

In a non-conducting material ðJ ¼ 0Þ with no free charge ðr ¼ 0Þ

divE ¼ 0; divB ¼ 0

curlE ¼ � @B

@t
; curlB ¼ Em

@E

@t
:

ð5:4Þ

The last two equations in (5.4) are Faraday’s law of electromagnetic induction and the complemen-

tary law of magneto-electric induction introduced by Maxwell.

The properties of electromagnetic waves involve the interaction between the two fields expressed

in the two laws of induction. We now eliminate one of the fields by combining the last two equations

in (5.4). Taking the curl of both sides of the third Maxwell equation,

curl curlE ¼ �curl
@B

@t
: ð5:5Þ

Since

�curl
@B

@t
� � @

@t
ðcurlBÞ ð5:6Þ

we can use the fourth equation to give

curl curlE ¼ �Em
@2E

@t2
: ð5:7Þ

Using the operator identity

curl curl � grad div �r2

and noting that div E ¼ 0 from the first Maxwell equation, we obtain

r2E ¼ Em
@2E

@t2
: ð5:8Þ

A similar derivation for B yields

r2B ¼ Em
@2B

@t2
: ð5:9Þ

These are the wave equations for an unattenuated electromagnetic field at any frequency and

travelling in any direction. Comparison with the general wave equation (see Chapter 1)

r2c ¼ 1

v2
@2c
@t2

ð5:10Þ
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gives the wave propagation velocity

v ¼ 1

Em

� �1=2

: ð5:11Þ

All electromagnetic waves in free space ðEr ¼ mr ¼ 1Þ travel with the same speed, which is a

fundamental constant usually given the symbol c. For a medium with permittivity E and permeability

m the wave velocity is

v ¼ 1ffiffiffiffiffi
Em

p ¼ cffiffiffiffiffiffiffiffi
Ermr

p : ð5:12Þ

Of the factors Er and mr which depend on the medium, the dielectric constant is usually the more

important, since it is unusual to encounter light waves in media where mr differs appreciably from

unity. In a dielectric, the ratio of the velocity in free space and the velocity in the medium is defined as

the refractive index n of the medium. Hence for a dielectric

n ¼ c

v
¼

ffiffi
E

p
r: ð5:13Þ

The velocity in free space c ¼ ðE0m0Þ
�1=2

was evaluated by Maxwell using laboratory electrical

measurements for E0 and m0. He obtained the velocity 3 � 108 m s�1, in remarkable agreement with

the measured speed of light. This led him to conclude that light was an electromagnetic disturbance

which propagated according to the laws of electromagnetism.

5.2 Transverse Waves

We stated in Chapter 1 that light is an electromagnetic wave with fields E and B oscillating

transversely to the direction of propagation. We now show that the transverse nature of light follows

directly from electromagnetic theory.

The wave equation (5.8) can represent waves of any frequency and any form, and it may be

expressed in any system of coordinates. In Cartesian coordinates the vector field E has components

E ¼ x̂Ex þ ŷEy þ ẑEz ð5:14Þ

where x̂; ŷ; ẑ are unit vectors in the x, y, z directions. These three components can be independent

solutions of equation (5.8). For a plane wave x̂Ex travelling in the z direction in free space

@2Ex

@z2
¼ 1

c2

@2Ex

@t2
: ð5:15Þ

This has the general solution

Ex ¼ f ðz� ctÞ þ gðzþ ctÞ ð5:16Þ

representing the superposition of two waves of any form travelling in the �z directions. Note that in

free space all electromagnetic waves, with whatever waveform, travel with the same velocity. In the
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modern system of units (since 1983), the velocity of light in free space is a defined quantity set at

299 792 458 m s�1 exactly.4

Can there be a solution representing a longitudinally polarized wave? Consider a plane wave

travelling in the z direction, with

E ¼ ẑE0 cosðot � kzÞ:

As it is a plane wave there is no variation of the field E in the x and y directions; in the expansion of

div E ¼ 0

@Ex

@x
þ @Ey

@y
þ @Ez

@z
¼ 0: ð5:17Þ

The first two terms are zero, so that Ez must be independent of z and no such progressive wave can

exist.

The B field is at right angles to the E field. Assuming that E is along the x axis as in equation

(5.16), this follows from the third Maxwell equation curl E ¼ �@B=@t, where, thanks to ŷ@Ex=@z,
the only non-zero component of @B=@t is along the y axis. Both B and E are transverse to the

direction of propagation, constituting a so-called TEM wave, in contrast to the TE and TM waves

encountered for example in fibre optics (Chapter 6). Those are not plane waves, and there may be

components along the direction of propagation. The ratio By=Ex when only one wave is present may

in general be found from partial differentiation of equation (5.16). The relation between E and B is

encapsulated in vector notation:

B ¼ 1

c
k̂ ^ E ðin free spaceÞ: ð5:18Þ

Here k̂ is the propagation vector, which is a unit vector in the direction of propagation of the wave.

Thus for the above example, with a wave moving in the þ Z direction, Ex ¼ cBy. In a dielectric, or

any isotropic non-conducting medium, the relation becomes

B ¼ 1

v
k̂ ^ E ð5:19Þ

where, as before,

v ¼ cffiffiffiffiffiffiffiffi
Ermr

p ¼ c

n
ð5:20Þ

and n � 1. Since the wave speed is less than the speed in free space, for a given frequency the

wavelength in a medium, l ¼ v=n, is less than that in free space. The wave speed in the medium, and

the refractive index, may vary with frequency; this is called dispersion. The spreading of colours in

light refracted by a prism is due to dispersion by the glass in the prism.

4See Chapter 9. The speed of light c ¼ ðE0m0Þ
�1=2

is a fundamental constant with the defined value of

299 792 458 m s�1. In SI units the magnetic constant is given the value m0 ¼ 4p� 10�7 H m�1, and it follows that

the electric constant is E0 ¼ 8:854 188 � 10�12 F m�1.
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5.3 Reflection and Transmission: Fresnel’s Equations

Snell’s law, discussed in Chapter 1, relating the angles of incidence and refraction as a ray enters or

leaves a refracting medium, tells only part of the story. A wave encountering a boundary between

media with different refractive indices n1; n2 will not only be refracted, but also be partly reflected.

The ratios of the amplitudes of the reflected and transmitted waves to that of the incident wave are

known as the amplitude reflection and transmission coefficients, r and t. The Fresnel equations for an

electromagnetic wave express the way in which these coefficients depend on the angles of incidence

ðy1Þ and refraction ðy2Þ, and on the polarization of the wave.

In Figure 5.1 the reflected and refracted rays are shown for two cases of plane polarization, when E

is (a) in the plane of incidence and (b) perpendicular to it. At the boundary, where the three rays meet,

there must be a match between the components of the electric and magnetic fields on either side of the

interface. Based on the second and third equations of (5.2), the boundary conditions to be met5 by E

and B are

(i) the component of the electric field parallel to the boundary, and

(ii) the component of the magnetic field perpendicular to the surface,

which must be the same on either side of the boundary. The subscripts k and ? refer to the orientation

of the electric field vector; for k it is parallel to the plane of incidence (the plane containing the

propagation vector k̂ and the normal to the interface), and for ? it is perpendicular.

In Figure 5.1(a) the surface component of the electric fields of the incident ray and transmitted rays

are Ei cos y1 and Et cos y2. The reflected ray is at angle p� y1, so that the surface component is

�Er cos y1. The first boundary condition is therefore

Ei cos y1 � Er cos y1 ¼ Et cos y2: ð5:21Þ

For the polarization shown in Figure 5.1(a) the magnetic fields are parallel to the interface, giving a

second boundary condition6

Bi þ Br ¼ Bt: ð5:22Þ

Since the magnitudes of E and B are related by

B ¼ n

c
E ð5:23Þ

where n is the refractive index of the medium, equation (5.22) gives

n1Ei þ n1Er ¼ n2Et: ð5:24Þ

5See for example Grant and Phillips, Electromagnetism, 2nd edn, 1990, p. 392 et seq.
6Since our media are assumed non-magnetic, m ¼ m0, the continuity of the component of H parallel to the

surface, which is implied by equation (5.2), carries over to B.
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Combining equations (5.21) and (5.24) gives the reflection and transmission coefficients rk and tk
which are defined as ratios of amplitudes:

rk ¼
Er

Ei

� �
k
¼ n2 cos y1 � n1 cos y2

n2 cos y1 þ n1 cos y2

tk ¼
Et

Ei

� �
k
¼ 2n1 cos y1

n2 cos y1 þ n1 cos y2

:

ð5:25Þ

A similar analysis for E perpendicular to the plane of incidence (Figure 5.1(b)) gives

r? ¼ Er

Ei

� �
?
¼ n1 cos y1 � n2 cos y2

n1 cos y1 þ n2 cos y2

t? ¼ Et

Ei

� �
?
¼ 2n1 cos y1

n1 cos y1 þ n2 cos y2

:

ð5:26Þ

Using Snell’s law n1 sin y1 ¼ n2 sin y2, the amplitude reflection and transmission coefficients can be

expressed in terms of angles only:

rk ¼
tanðy1 � y2Þ
tanðy1 þ y2Þ

; tk ¼
2 sin y2 cos y1

sinðy1 þ y2Þ cosðy1 � y2Þ

r? ¼ � sinðy1 � y2Þ
sinðy1 þ y2Þ

; t? ¼ 2 sin y2 cos y1

sinðy1 þ y2Þ
:

ð5:27Þ

Figure 5.2(a) is a typical plot of these reflection ðrÞ and transmission ðtÞ coefficients, for an air/glass

boundary with n2 ¼ 1:5 (where n1 � 1).

Br

Br

Er

Er

Ei
EiBi

Bi

n1 n1

E1 E1B1

B1

q1 q1

q1 q1

q2 q2

n2 n2

(a) (b)

Figure 5.1 Reflected and refracted rays at a boundary. The directions of the vector fields are shown for (a) E in
the plane of incidence (k) and (b) E normal to the plane of incidence (?)
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Note that these coefficients are for amplitudes. The flow of energy across a surface, known as the

irradiance (see Appendix 2), is proportional to the square of the amplitude, so that the reflectance R is

r2, (See Figure 5.2(b)). The transmittance T is found from

T ¼ n2

n1

cos y2

cos y1

� �
t2; ð5:28Þ

where the extra factor of n2=n1 accounts for power flow within a medium, and the geometric factor is

due to the lateral compression of the wavefront (see Section 5.5 below). It is a useful exercise to

check that Rþ T ¼ 1 for both polarizations.
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Figure 5.2 (a) Reflection ðrk; r?Þ and transmission ðtk; t?Þ coefficients for light incident on an air/glass
boundary with refractive index n ¼ 1:50. (b) Reflectance coefficients Rk; R?
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It will be seen from equation (5.27) that rk goes through zero when y1 þ y2 ¼ p=2 (since

tanðp=2Þ ¼ 1), and that it changes sign. At this point the angle of incidence is known as the

Brewster angle, shown in Figure 5.2. The change of sign indicates a phase reversal. Light reflected at

the Brewster angle becomes completely linearly polarized, with the electric vector normal to the

plane of incidence. It is this behaviour that makes polaroid glasses useful in reducing the glare of light

reflected off a wet road, and in allowing fishermen to see into a lake despite the reflection of the bright

sky in its surface. Similarly, a glass plate at the Brewster angle is completely transparent for light with

the electric vector parallel to the plane of incidence; this is used in the windows of gas lasers to avoid

reflection losses.

For normal incidence the magnitudes7 of the reflection and transmission coefficients are

independent of polarization, becoming simply

r ¼ rk ¼ �r? ¼ n2 � n1

n1 þ n2

t ¼ tk ¼ t? ¼ 2n1

n1 þ n2

:
ð5:29Þ

The reflectance R and transmittance T are then

R ¼ r2 ¼ n2 � n1

n1 þ n2

� �2

T ¼ n2

n1

t2 ¼ 4n1n2

ðn1 þ n2Þ2
:

ð5:30Þ

The reflectance loss of 4% at normal incidence for a typical air/glass surface with n2 ¼ 1:5
becomes a serious problem in the multi-component lenses of optical instruments such as cameras and

telescopes. The losses can, however, be halved by coating the surface with a transparent layer with a

lower refractive index ðn1n2Þ1=2
, as may be verified with the help of equation (5.30) (see Problem

5.3). Further improvement can be achieved in very thin coated layers, through the effects of thin-film

interference between reflections from the front and back of the coating (see Chapter 8). The

reflectance can be reduced to zero for a chosen wavelength if the layer is made a quarter wavelength

thick.

5.4 Total Internal Reflection: Evanescent Waves

In Chapter 1 we saw that a ray meeting a boundary between media with higher and lower refractive

indices at a large angle of incidence may be totally reflected; this is referred to as total internal

reflection. In this case there are two important extensions required to the Fresnel theory. The

geometric ray approach merely shows total reflection, and makes no distinction between reflection at

a dielectric and at a metallic surface. The boundary conditions are, however, quite different, since for

the metallic conductor the tangential electric field is zero, while there is no such restriction on the

tangential field at a dielectric surface. There are two consequences: first, there is an extension of the

7The opposite signs may be understood from the geometry of Figure 5.1.
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field across the boundary into the medium of lower refractive index, and, second, there is a phase shift

in the reflected wave.

The wave field outside the dielectric boundary is an evanescent wave, whose amplitude falls

exponentially with distance from the boundary. This field contains energy and transports it parallel to

the boundary but not normal to it. The presence of this evanescent field is important in fibre optics,

where light is confined to a thin glass fibre by total internal reflection. The energy flow is not confined

to the core of the fibre, but extends to a cladding of lower refractive index glass into which according

to geometric optics it cannot penetrate. No energy is lost by the evanescent wave unless there is

absorption in the medium in which it is travelling. The cladding must therefore be thick enough to

accommodate the evanescent wave, and it must also, like the core, be made of low-loss material.

The analysis of reflection coefficients now involves the matching at the boundary of the evanescent

wave to the incident and reflected waves. The reflection coefficients8 then contain an imaginary

component. Writing n ¼ n2=n1 and eliminating y2 ¼ yt with the help of Snell’s law, equations (5.27)

yield

rk ¼
n2 cos yi � iðsin2 yi � n2Þ1=2

n2 cos yi þ iðsin2 yi � n2Þ1=2
¼ exp ðifkÞ

r? ¼ cos yi � iðsin2 yi � n2Þ1=2

cos yi þ iðsin2 yi � n2Þ1=2
¼ expðif?Þ:

ð5:31Þ

These equations have been cast in a form suitable for the case of total internal reflection, where

sin yi > n and the reflection coefficients are complex numbers of unit modulus. In this case, the

reflectance takes the form R ¼ jrj2, and we see that the reflection is indeed total: R ¼ 1.

The phase change on reflection fðyÞ is found from these reflection coefficients:

tan
fk

2
¼ �ðsin2 yi � n2Þ1=2

n2 cos yi

ð5:32Þ

tan
f?
2

¼ �ðsin2 yi � n2Þ1=2

cos yi

: ð5:33Þ

Figure 5.3 shows the phase change for a glass/air interface where n ¼ 1:5. Note that the difference

fk � f? reaches �45�, so that the polarization of a linearly polarized ray with both parallel and

perpendicular components can be changed substantially on reflection (see Chapter 7). This phase

change on reflection can be used to produce circularly polarized light from plane polarized light.

5.5 Energy Flow

The total energy per unit volume u contained in a system of electric and magnetic fields in an

isotropic medium is9

u ¼ 1

2
ðD � Eþ B �HÞ� ð5:34Þ

8See Born and Wolf, Principles of Optics, 6th edn, p. 48.
9See for example Grant and Phillips, Electromagnetism, 2nd edn, 1994, p. 383.
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Thus the energy density in a combination of electric and magnetic fields with magnitudes E and B

may be written as EE2=2 þ B2=2m. In a rapidly varying harmonic wave, we must take the average over

a whole cycle. The energy is proportional to the square of the fields, so that for any wave component

such as E ¼ x̂E0 sinðkðz� vtÞÞ the average square of the field is 1
2
E2

0 where E0 is the field amplitude.

The mean energy density u is therefore

�u ¼ 1

4
ðEE2

0 þ B2
0=mÞ: ð5:35Þ

Since B0 ¼ E0=v and v ¼ ðEmÞ�1=2
, the two terms are equal and the energy density may be written as

�u ¼ 1

2
EE2

0: ð5:36Þ

The average energy crossing unit area per unit time in the z direction is the product �S ¼ v�u:

�S ¼ 1

2
vEE2

0 ¼ 1

2
E2

0

ffiffiffi
E
m

r
¼ 1

2
cnE0E

2
0: ð5:37Þ

The last member assumes a non-magnetic medium where n ¼
ffiffi
E

p
r.

In free space �S ¼ 1
2
E0cE

2
0 ¼ 1

2
E2

0=Z0, where Z0 ¼ ðm0=E0Þ1=2 ¼ m0c has the dimensions of resis-

tance; it is known as the impedance of free space. Substitution of the values of E0; m0 in SI units gives

Z0 ¼ 376:73 ohms (often quoted as 377 ohms). Using a root mean square of the field

Erms ¼ ðE2Þ1=2 ¼ ðE2
0=2Þ1=2

in volts per metre, the energy flow is ðE2
rms=377ÞW m�2 (see Problems

5.2(iii) and 5.6).

The energy flow is a vector known as the Poynting vector S. Electromagnetic theory shows that in

terms of the magnetic intensity H, its generic and instantaneous value is

S ¼ E ^H: ð5:38Þ
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Figure 5.3 The phase change at total internal reflection in a glass/air interface when n ¼ 1:5, for parallel and
perpendicular polarizations. The broken line shows the difference between them
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For a plane wave in the direction of the unit wave vector k̂, and in a medium with permittivity E and

permeability m, the time-averaged Poynting vector is

S ¼ 1

2
E2

0

ffiffiffi
E
m

r
k̂: ð5:39Þ

Since optical frequencies are so high (nopt 	 1015 Hz), most detectors of optical radiation will respond

to the cumulative effect of many cycles. The time average of the magnitude of S is known as the

irradiance I¼ S. When referred to visible light and calibrated to the response of the human eye, it is

called illuminance (see Appendix 2).

We are now in a position to return to the Fresnel transmittance issue and derive equation (5.28).

Consider those portions of the incident, reflected and transmitted waves that intersect the interface

between the two media in a common footprint of area A0. If Ii and Ai are the irradiance and cross-

sectional area of the incident beam, it carries a power IiAi; but since the incident ray is tilted at angle

yi from the normal, the area of the incident beam is foreshortened: Ai ¼ cos yiA0. Analogous

formulae hold for the other two beams. Since the dielectrics are non-conducting, there are no free

surface currents to create ohmic dissipation. Conservation of energy then requires that all incident

power emerges in the reflected or transmitted beams:

Ii cos yiA0 ¼ Ir cos yrA0 þ It cos ytA0: ð5:40Þ

Inserting the irradiances from the last member of equation (5.37),

n1E
2
0i cos yi ¼ n1E

2
0r cos yr þ n2E

2
0t cos yt: ð5:41Þ

Dividing through by the left side, with yr ¼ yi; r ¼ E0r=E0i and t ¼ E0t=E0i gives

1 ¼ r2 þ n2 cos yt

n1 cos yi

t2: ð5:42Þ

We can identify the first term on the right (reflected power/incident power) as the reflectance R, and

the second term (transmitted power/incident power) as the transmittance T :

5.6 Photon Momentum and Radiation Pressure

The reality of assigning a discrete momentum to a photon was demonstrated by A. Compton in 1923.

He investigated the scattering of monochromatic X-rays by the electrons in a block of paraffin. An X-

ray photon in collision with an electron will change direction, as in Figure 5.4, and transfer part of its

energy and momentum to the recoiling electron (see Compton scattering, Section 19.11).

The X-ray photon leaves the scatterer with energy reduced by an amount depending on the angle of

scatter. Taking account of the conservation both of momentum and of energy, the increase in

wavelength l0 � l of the photon at the collision can be found from the dynamics of the collision10

l0 � l ¼ h

mec
ð1 � cosfÞ: ð5:43Þ

10See for example F.H. Read, Electromagnetic Radiation, John Wiley & Sons, 1980, p. 230.
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In equation (5.43), the constant h=mec ¼ 2:43 � 10�12 m is known as the Compton wavelength of the

electron; it is 2 � 105 times shorter than the wavelength of visible light. Subsequent experiments

detected the individual recoil electrons in the Compton effect, but the measurement of the wavelength

shift was in itself sufficient to establish the reality of this corpuscular behaviour of a photon, i.e. that

photons behave like billiard balls.

When electromagnetic radiation meets a boundary between two media it exerts a pressure known

as radiation pressure. This pressure is related to the flow of momentum in the radiation, and it is

therefore most easily understood by considering the radiation in terms of photons. The momentum p

carried by a photon is p ¼ h=l. The flux of photons, i.e. the number N crossing unit area per unit

time, is obtained from the time-averaged Poynting vector, or irradiance I, divided by the photon

energy:

N ¼ I

hn
: ð5:44Þ

If all the photons are incident normally from air, and are absorbed at the surface, the radiation

pressure P is given by Newton’s second law, as is the rate of absorption of momentum:

P ¼ N
h

l
¼ I

c
¼ E0E2 ð5:45Þ

where E2 ¼ 1
2
E2

0 is the mean square field in the radiation. For total reflection the momentum transfer

is doubled, and correspondingly the pressure is doubled because the direction of the photon is

reversed: P ¼ 2E0E2 ¼ E0E
2
0.

Radiation pressure is, of course, explicable in purely classical terms. In a reflection at a conductor,

the radiation field E acts on charge carriers to produce a current, and the B field acts on the induced

current to give a Lorentz force which is directed into the conductor. Since B is proportional to E, the

pressure is proportional to EE2
0 as in equation (5.45).

Circularly polarized radiation carries an inherent angular momentum, so that in addition to

radiation pressure there is also a torque on any refracting or reflecting surface which it encounters. All

photons, of any energy, have an intrinsic angular momentum11 �h ¼ h=2p; this is aligned in the

ElectronIncident photon
energy hv

Photon
energy hv ′

f

Figure 5.4 The Compton effect. An X-ray photon with energy hn (wavelength l) collides with an electron, loses
energy and momentum, and emerges deviated through angle f and with reduced energy hn0 (wavelength l0)

11See for example Read, Electromagnetic radiation, p. 36.
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direction of travel for RH circular polarization, and in the reverse direction for LH circular

polarization. No torque is experienced in random polarization, in which there are equal numbers

of LH and RH photons, or in linear polarization, in which the LH and RH photons are equal in

number and also correlated. With the number flux of equation (5.44), the maximum rate of transfer of

angular momentum per unit area to an absorber is

J ¼ h

2p
I

hn
¼ I

o
: ð5:46Þ

The practical use of the radiation pressure of laser light on individual atoms and other small

particles is described in Section 16.7. Even at the distance of the Earth, the pressure of solar radiation

may be important for artificial satellites, and may be used for accelerating low-mass satellites by the

use of solar sails. The pressure on a solar panel absorbing the whole incident solar energy at Earth’s

distance from the Sun (1.4 kW m�2) is 4:7 � 10�6 N m�2; on a completely reflecting solar sail this

value is double. Note that the force on 1 square metre of sail equals the gravitational force on a mass

of half a milligram on Earth.

5.7 Blackbody Radiation

The quantized nature of radiation has a profound effect on the spectrum of thermal radiation, and we

end this chapter by considering the spectrum of electromagnetic radiation from a blackbody.

A blackbody is one that completely absorbs any radiation of any wavelength incident upon it. The

intensity and spectrum of radiation from a blackbody are then characteristic only of its temperature.

The concept of blackbody radiation is usually illustrated in terms of radiation inside an isothermal

enclosure, inside which radiation from the walls is balanced by absorption. A small hole in the surface

of the blackbody enclosure gives access to the radiation, like a peephole into an oven. The hole will

absorb all radiation from outside, and therefore acts as a blackbody. The radiation within the

enclosure reaches an equilibrium in which emission balances absorption, and the small sample of the

radiation which emerges from the hole is the blackbody radiation. We need to relate the spectrum and

the intensity (the irradiance) of this radiation to the temperature of the enclosure.

Consider first the classical pre-1900 view of radiation and absorption, in which each small range of

frequencies is continuously emitted and absorbed by an oscillator consisting of an electron in a

resonant system. Each oscillator has an average energy kT, and according to classical electromagnetic

theory it radiates energy at a rate proportional to kT and to n2. It must absorb at the same rate if the

radiation is in equilibrium with its surroundings. The calculation of the equilibrium intensity involves

the relation of the absorption cross-section of the oscillator to its rate of radiation, but the essential

point is that the equilibrium intensity of the radiation is also proportional to kTn2. The exact relation

is the Rayleigh–Jeans formula12

uðnÞdn ¼ 8pkT
c3

n2 dn ð5:47Þ

where uðnÞdn is defined as the energy per unit volume in a frequency range dn.

12See for example F. Mandl, Statistical Physics, 2nd edn, John Wiley & Sons, 1988, Ch. 10.
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The problem with this classical calculation is the factor n2, which gives an intensity increasing

indefinitely with frequency, which is obviously physically impossible. The radiation from an electric

heater, for example, is concentrated in the red and infrared, and not in the ultraviolet. The solution to

this dilemma was found by Planck (see Chapter 1), who abandoned the assumption that all oscillators

would have an average energy of kT , and introduced an apparently arbitrary assumption that the

energy of any oscillator at frequency n could only exist in discrete units of hn, where Planck’s

constant h ¼ 6:626 � 10�34 J s. This quantization gives the oscillator an average energy not of kT but

kT multiplied by the factor

hn
kT

exp
� hn
kT

�
� 1

� ��1

:

The energy density of the blackbody radiation spectrum in the frequency range dn then becomes

uðnÞdn ¼ 8phn3

c3

dn
½expðhn=kTÞ�1
 : ð5:48Þ

This is the Planck radiation formula for the energy density within a blackbody.

The irradiance I of a blackbody is related to the energy density u by considering the energy flowing

out of a unit area hole in a blackbody cavity. Within the cavity the flow is uniform in direction over

solid angle 4p. Outside, the flow at angle y to the normal through solid angle d� is uc cos yd�=4p. In

direction y;f, where f is the azimuth angle, d� ¼ sin ydydf, so that the irradiance is

I ¼
R 2p

0

R p=2

0
uc cos y sin ydydf=4p ¼ uc=4.

The Planck formula for irradiance is therefore

IðnÞdn ¼ 2phn3

c2

dn
½expðhn=kTÞ � 1
 : ð5:49Þ

The concept of quantized oscillators in the walls of a cavity was later replaced by quantization of

resonant modes of electromagnetic waves within the cavity, but the theory is otherwise unchanged.

The effect of the Planck term is seen in the solid line of Figure 5.5, where the unmodified Rayleigh–

Jeans curve, shown as a broken line, indicates a spectrum increasing indefinitely at high frequencies.

Note that the Rayleigh–Jeans formula may be sufficiently nearly correct to be used at low frequencies

when hn=kT is small; see Problem 5.9.

The blackbody spectrum defined as a function of wavelength is

uðlÞdl ¼ 8phc

l5

1

½expðhc=lkTÞ � 1
 dl; ð5:50Þ

and becomes IðlÞdl when multiplied by c=4. This is plotted in Figure 5.6 for a range of temperatures.

The peak in each curve at lmax is near the wavelength at which hc=l ¼ kT , so that the product lmaxT
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is a constant. This gives Wien’s law:13

lmaxT ¼ 2:897 � 10�3m K: ð5:51Þ

It is interesting to note that Wien’s law was formulated before quantization was introduced by

Planck. It turns out that thermodynamic arguments alone can establish both Wien’s law and another

fundamental radiation law due to Stefan. This concerns the total energy integrated over a blackbody

spectrum, and is unaffected by quantization. Stefan’s law, found experimentally in 1879 and derived

from thermodynamics by Boltzmann in 1884, states that the total power radiated by a blackbody over

all wavelengths is proportional to the fourth power of the temperature, giving

IðTÞ ¼
Z 1

0

IðnÞdn ¼ sT4 ð5:52Þ

where I is the total power radiated per unit area, and s ¼ 5:67 � 10�8 W m�2 K�4 is the

Stefan–Boltzmann constant.14

13Wien’s law may also be stated in terms of frequency n; it is easily derived in this form from equation (5.50)

by writing Planck’s formula as

IðqÞ ¼ 2pk3T3

c2h2

q3

expðqÞ � 1

where q ¼ hn=kT and differentiating with respect to q. The result is nmax ¼ 2:82kT=h. Note that this calculation

relates to the maximum per unit frequency, while equation (5.51) refers to a maximum per unit wavelength,

which occurs at occurs at wavelength lmax ¼ ch=4:965kt ¼ 0:568c=nmax.
14Strictly speaking, the power leaving unit area of a surface is known as the radiant exitance, Me, but

physically it is very close to irradiance so we here denote it as such.
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Figure 5.5 The blackbody radiation curve. The broken curve shows the dependence expected without
quantization
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Very closely connected to the irradiance IðtÞ is the energy density uðTÞ found by integrating equation

(5.48) over all frequencies. Using q ¼ hn=kT , and the identity

Z 1

0

fq3=½expðqÞ � 1
gdq ¼ p4=15 ð5:53Þ

we find

uðTÞ ¼ 8ph
c3

Z 1

0

n3dn
expðhn=ktÞ � 1

¼ 8pðkTÞ4

h3c3

Z 1

0

q3dq

expðqÞ � 1
¼ 8p5k4

15h3c3
T4: ð5:54Þ

In other words, the energy density of blackbody radiation has the form

uðTÞ ¼ aT4 ð5:55Þ

where

a ¼ ð8p5=15Þk4ðhcÞ�3 ¼ 7:57 � 10�16J m�3 K�4: ð5:56Þ

Since we have just shown that I ¼ cu=4, the constants in equations (5.52) and (5.55) are related by

s ¼ ca=4.

The most perfect blackbody radiation curve ever observed is that of the cosmic microwave

background radiation, which is a relic of the concentrated thermal radiation which filled the early

Universe soon after the Big Bang. As the Universe expands, reducing the energy concentration in this

radiation, the radiation cools but its spectrum remains that of a blackbody. At the present state of

expansion the temperature of this radiation is 2.73 K, giving a spectrum peaking near 1 millimetre

wavelength. The spectrum was measured with remarkable precision from above the Earth’s atmo-

sphere, with a spectrometer on the COBE satellite (Figure 5.7).
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Figure 5.6 Blackbody radiation; intensity plotted against wavelength for different temperatures
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Wien’s law gives a useful guide to the spectral range at which any hot body radiates most

efficiently, even if it is not a perfect blackbody. The spectrum of solar radiation is a good

approximation to that of a blackbody at 6000 K; the peak at 500 nm comes within the visible

spectrum, coinciding with the range of wavelengths that can penetrate the Earth’s atmosphere and to

which our eyes are sensitive. X-rays originate in hotter places, with temperatures of order 106 K; in

astronomy most such sources are ionized gas clouds, such as the outer part of the solar atmosphere.

Problem 5.1
The general one-dimensional wave equation @2y=@z2 � ð1=v2Þ@2y=@t2 ¼ 0 is just like equation (5.15) but allows

for a wave speed v that may differ from c, the vacuum speed of light. Find out by inspection which of the

following are solutions (real- or complex-valued) of the wave equation, and when they are, give their wave speed

v. Note that singular and divergent solutions are allright so long as they are well defined over at least some finite

range of z and t.

(a) y ¼ tan7ðz� 3tÞ

(b) ~y ¼ exp½iða2z2 � 2abzt þ b2t2Þ
:

(c) y ¼ 5 cosðz� 2tÞ þ 8 sinðzþ 3tÞ:

(d) y ¼ lnðz2 � 25t2Þ:

(e) y ¼ exp½�a2ðz� tÞ2 � b2ðzþ tÞ2


(f) y ¼ sin½1=ðzþ 2tÞ3
:

Problem 5.2

(i) A slab of GaAs crystal, used in a laser, has refractive index n ¼ 3:6. What fraction of the energy of

radiation generated in the slab and incident normally on the top face is reflected? What is the

transmittance for radiation from outside entering the slab at normal incidence?
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Figure 5.7 The blackbody spectrum of the microwave cosmic background radiation. The observational data from
the COBE satellite fit precisely on the theoretical curve for a temperature of 2.73 K. (Mather J.C. et al., 1994,
Astrophys. J., 420, 439)
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(ii) Two glass slabs, with refractive indices 1.5 and 1.3, are glued together with a thick layer of

transparent material with refractive index 1.4. Show that the light lost by reflection is

approximately halved compared with a direct contact between the slabs.

(iii) A light wave in glass with refractive index 1.5 has a transverse electric field amplitude of

10 V m�1. What is the associated magnetic field and the energy density?

(iv) At what wavelengths are the maximum output of radiation from blackbodies at temperatures

3 K, 20�C, 5800 K?

(v) The average irradiance of solar radiation at the Earth is 1.4 kW m�2. Most is absorbed; calculate

the total force on the whole of the Earth. The mean radius of the Earth is 6:4 � 106m.

Problem 5.3
A film with refractive index nf is placed between two media with indices n1 and n2. (a) For light incident

normally, passing from 1 to 2, find the value of nf that maximizes the net transmittance, T1f2, and determine this

optimal value. (Hint: Instead of maximizing T1f2 itself, it is easier to maximize its natural logarithm.) (b)

Compare the minimal reflective loss (1 � T1f2) with ð1 � T12Þ, the value it would have in the absence of the film

for the two cases: (i) n1 ¼ 1:44; n2 ¼ 1:69; and (ii) an air–diamond interface, n1 ¼ 1:00; n2 ¼ 2:40.

Problem 5.4
What fraction of light is reflected at the surface of a lens with refractive index 1.5? Show how this may be

reduced by a suitable surface coating.

Problem 5.5
Compare the solar radiation pressure on the Earth (see Problem 5.2(v) above) with the gravitational attraction of

the Sun, and find the radius of a sphere with density the same as the mean density of the Earth (5.5 g cm�3) for

these forces to balance. (Hint: The gravitational force can be found from the period of the Earth’s orbit and its

distance 1:5 � 1011 m from the Sun.)

Problem 5.6
Following Section 5.5, estimate the electric field amplitude due to normal illumination from a desk lamp.

Assume it converts some 2% of its wattage to light.

Problem 5.7
A 1 kW laser beam has a cross-sectional diameter of 5 mm. Calculate the irradiance and the amplitudes of the

electric and magnetic fields.

Problem 5.8
Consider two monochromatic electromagnetic waves of the same frequency. Under what circumstances of pola-

rization can they add so that the irradiance of the sum is always equal to the sum of their two separate irradiances?

Problem 5.9
Two plane waves exactly in phase combine to form a wave with double amplitude, i.e. with quadruple power.

Where does the extra energy come from?

Problem 5.10
In Section 5.7 we state that a (one-dimensional) simple harmonic oscillator with frequency n and in thermal

equilibrium at temperature T radiates energy at a rate proportional to kTn2. In Section 18.1 we show that �P, the

average power radiated by a Hertzian dipole, goes as o4x2
0, where o ¼ 2pn and x0 is the amplitude of the

oscillation. Reconcile these two statements.
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Problem 5.11
Show that Planck’s formula for blackbody radiation goes over to the Rayleigh–Jeans formula in the low-

frequency limit. (Note that for jxj � 1; expðxÞ ’ ð1 þ xÞ:) Determine the frequency below which the Rayleigh–

Jeans formula applies for the 3 K cosmic background radiation.

Problem 5.12
Any mass M compressed into a sphere of radius Rbh ¼ 2GM=c2 is dense enough to become a black hole, a region

of spacetime with gravity so intense that no particles or radiation can escape. The cosmic microwave background

(CMB) with a temperature of 2.73 K fills space uniformly. Find out whether the CMB is dense enough to turn the

Observable Universe into a black hole. (Note that the mass density of blackbody radiation is u=c2 ¼ aT4=c2,

where a ¼ 7:57 � 10�16 J m�3 K�4, and that the Observable Universe has a radius of R � 1010 light-years (lyr),

where 11yr ¼ 9:46 � 1015 m).

Problem 5.13
What is the weakest incident photon that can lose two-thirds of its energy when Compton scattering off an

electron? Give its energy in eV. By reference to Figure 1.7, tell what kind of photon it is.

Problem 5.14
A standard formula to calculate the flux of any scalar quantity Q (mass, charge, number of particles, etc.) through

a chosen area is

Flux of Q ¼ �Q=ð�t�AÞ ¼ ð�Q=�VÞ � �Vn: ð5:57Þ

Here t is time, V is volume, and �Vn is the mean component of velocity normal to the area. Let us consider the

energy flux of blackbody radiation escaping from a peephole in the cavity. The radiation is isotropic, which

means that the net flux is zero; there are equal and opposite fluxes that cancel each other out. Assume the hole is

small enough that it does not disturb the radiation a small distance inside the cavity. But as we approach the hole,

the inward-moving photons vanish (no cavity photons are entering from outside) and only the outward-moving

ones remain. These latter photons are the ones with a positive component of Vn. Our flux formula becomes

IðtÞ ¼ �U=ð�t�AÞ ¼ ð�U=�VÞout � �Vn ¼ 1

2
uðTÞ�Vn: ð5:58Þ

Since outward-moving photons near the hole represent half of the photons, we have set the relevant energy

density equal to half the total. By evaluating �Vn, verify that the constants in equations (5.52) and (5.55) are

related by s ¼ ca=4. (Hint: Properly oriented spherical coordinates make the calculation easier.)
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6 Fibre and Waveguide Optics

. . . beauty draws us with a single hair.

Alexander Pope, The Rape of the Lock.

If hairs be wires.

William Shakespeare, Sonnets.

The transmission of light along a curved dielectric cylinder was the subject of a spectacular lecture

demonstration by John Tyndall in 1854. His light pipe was a stream of water emerging from a hole in

the side of a tank which contained a bright light. The light followed the stream by total internal

reflection at the surface of the water. Light pipes made of flexible bundles of glass fibres are now

routinely used to illuminate internal organs in surgical operations in the fibrescope (or endoscope)

which also transmits an image back to the surgeon. The overwhelmingly important use of glass fibres

is, however, to transmit modulated light over large distances for communications.

Electrical cables and radio have largely been replaced by optical fibres in long-distance terrestrial

communications. Hundreds of thousands of kilometres of fibre optic cables are now in use, carrying

light modulated at high frequencies, providing the large communication bandwidths needed for

television and data transmission. The techniques which made this possible are the subject of this

chapter. These techniques involve the manufacture of glass with very low absorption of light, the

development of light emitters and detectors which can handle high modulation rates, and the

fabrication of very thin fibres which preserve the waveform of very short light pulses. An essential

development has been the cladding of fibres with a glass of lower refractive index, which prevents the

leakage of light from the surface.

Optical fibres are also useful in short communication links, especially where electrical connections

are undesirable. They also offer remarkable opportunities in computer technology and in laboratory

instrumentation such as interferometers and a variety of optical fibre sensors.

We start by discussing the propagation of a light ray by internal reflection in a light pipe, and show

how this approach may be developed into the concept of waves guided inside a dielectric slab or

along a thin fibre. The cylindrical geometry of a fibre, and the light-confining feature of a fibre, which

is a step or a gradient in refractive index, both need special consideration. Propagation in a light fibre

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



may be dispersive, so that different wavelengths travel at different speeds; we show how the effects of

dispersion are calculated and how they may be compensated for. We then briefly describe some of the

many applications of fibres outside the field of communications.

6.1 The Light Pipe

The transmission of light along a glass rod depends on the total internal reflection of a ray reaching

the surface at a glancing angle, i.e. at a high angle of incidence (Section 1.3). A light pipe in the form

of a glass rod can be used to conduct light round corners (Figure 6.1), provided that the corners are

not so sharp that the complementary angle of incidence1 y falls above the critical angle defined by

cos ycrit ¼ sin ynlcrit ¼ ðn2=n1Þ.
A bundle of thin glass fibres, usually coated with glass or plastic with lower refractive index, can

transmit an optical image, as in the surgeon’s endoscope. If the fibre ends are aligned in a plane, the

light distribution across them will be reproduced at the other end of the bundle. Tapering the fibres

along the bundle can be used to reduce or enlarge an image; rearranging them can compensate for

distortions introduced in other parts of an optical system. A random rearrangement of the fibres

within a bundle can be used to ‘‘scramble’’ an image; the opposite rearrangement, using the bundle in

the reverse direction, will then restore the image. Fibre optic bundles occur naturally in both the

animate and the inanimate world. The retina of the human eye, and many other eyes, has an assembly

of rods and cones which transmit light from the surface of the retina to light-sensitive cells. In many

insects, the transmission is sensitive to polarization, providing the information which insects use for

navigation. Natural inanimate fibre optics is found in the crystalline material known as ulexite, which

is a fibrous form of borax.

To deal with the propagation of light by the thin glass fibres used in communications a different

approach is necessary; now the diameter of the fibre is comparable with the wavelength of light, and

we must consider the light as a wave which is guided by the fibre. The ray concept is useful in

understanding refraction at the ends of a fibre, and to some extent in considering propagation within it

and reflection at the boundary; however, the wave theory is essential for understanding the field

distribution within the fibre. The configuration of the wave inside the fibre is constrained by

conditions at the boundary of the fibre; we must also consider the extension of the wave field outside

the boundary, into the cladding of the core fibre.

θ

Figure 6.1 A light pipe, showing total internal reflection of a light ray

1In fibre optics it is conventional to designate the angle between a ray or wavenormal and the fibre axis as y,
which is the complement of the angle ynl measured from the normal and used in the analyses of refraction by

Snell and by Fresnel; see Chapters 1 and 5.
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6.2 Guided Waves

Wedevelop the theory of the propagation of light along a cylindrical fibre in three stages. The requirement

is to find wave configurations within the fibre which are solutions of Maxwell’s equations, and which

conform to the boundary conditions, i.e. the physical conditions at the surface of the core of the fibre. The

first stage is to apply Maxwell’s equations (Chapter 5) to a wave confined to a parallel-sided slab of

dielectric. There are twomajor differences from free space propagation: there can be components of both

E and B fields in the direction of propagation, and only a limited number of wave patterns between the

faces of the slab, known as modes, can propagate between the faces of the slab. The allowable mode

patterns depend on the thickness of the slab and on the boundary conditions.

The effect of the boundary conditions is easiest to understand if the faces of the slab are perfectly

conducting metal slabs; this is close to the practical case of waveguides for centimetric and

millimetric radio waves. The second stage is to consider a slab guide bounded by a step in dielectric

constant; the boundary conditions are then more complicated and there is a component of the wave

outside the surface of the slab. These two stages allow us to understand the fundamental

characteristics of guided waves, and in particular their field patterns and their velocities. The

geometry then needs to be adapted to the more complex mathematics of cylindrical rather than

rectangular symmetry.

Maxwell’s equations in free space (equations (5.4)) are

divE ¼ 0 divB ¼ 0 ð6:1Þ

curlB ¼ �m
@E

@t
curlE ¼ � @B

@t
: ð6:2Þ

As we have seen in Chapter 5, these lead to the wave equations

r2E ¼ �m
@2E

@t2
ð6:3Þ

r2B ¼ �m
@2B

@t2
: ð6:4Þ

The electric field may be expressed in Cartesian components:

E ¼ x̂Ex þ ŷEy þ ẑEz ð6:5Þ

where x̂; ŷ; ẑ are unit vectors in the x; y; z directions.
The separate field components each obey the wave equation, so that the y component obeys

r2Ey ¼ �m
@2Ey

@t2
: ð6:6Þ

For a plane wave in the z direction Ey does not vary in directions x or y, and equation (6.6) reduces to

@2Ey

@z2
¼ �m

@2Ey

@t2
ð6:7Þ

which represents waves of any form Ey ¼ E0f ðz� vtÞ where the velocity v ¼ ð�mÞ�1=2
. In free space

the corresponding magnetic field is in the x direction; both fields are transverse to the direction of

propagation.
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The same wave will propagate along the slab guide shown in Figure 6.2, since it conforms to the

boundary conditions at the conducting walls, where the tangential component of the electric field and

the normal component of the magnetic field are required to be zero at the walls. Hence the electric

field must be perpendicular to the walls. The wave velocity v ¼ o=k is the velocity of light in the

medium between the plates. This mode is referred to as the transverse electric and magnetic, or TEM,

mode. We now find other modes which will propagate in the slab guide. As in equation (6.7) the wave

travels in the z direction, but the electric and magnetic fields are now constant only in the x direction.

Setting @=@x ¼ 0, equations (6.2) reduce to

@Ez

@y
� @Ey

@z
¼ � @Bx

@t
ð6:8Þ

@Ex

@z
¼ � @By

@t
ð6:9Þ

@Ex

@y
¼ @Bz

@t
ð6:10Þ

@Bz

@y
� @By

@z
¼ �m

@Ex

@t
ð6:11Þ

@Bx

@z
¼ �m

@Ey

@t
ð6:12Þ

@Bx

@y
¼ ��m

@Ez

@t
: ð6:13Þ

Two sets of solutions emerge from this array. Equations (6.9), (6.10) and (6.11) contain only Ex

together with By and Bz; these form solutions in which the electric field has no components in the

direction of propagation, but the magnetic field does; in contrast equations (6.8), (6.12), and (6.13)

contain only Bx together with Ey and Ez; these form solutions in which the magnetic field has no

components in the direction of propagation, but the electric field does. These two sets of solutions

represent transverse electric (TE) and transverse magnetic (TM) modes respectively. We now

describe the field patterns in the individual modes.

Based on Fourier analysis, we consider harmonic waves as the basic modes into which any

wave within the guide can be decomposed. Of course, only those harmonic waves are allowed that

satisfy the appropriate boundary conditions. Each mode has a simple field pattern which varies

sinusoidally across the guide. This can conveniently be regarded as the combination of two

crossing plane waves with certain allowed values of wave vectors k�. Consider first a pair of

z

y

E
EB

Bx

Figure 6.2 A waveguide formed by two conducting plates, showing the simplest propagating mode (the TEM
mode)
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waves with electric vector in the x direction, and with vectors k� making angles �y with the

z direction:

E1 ¼ x̂E0 exp½iðot � kz cos yþ ky sin yÞ� ð6:14Þ
E2 ¼ �x̂E0 exp½iðot � kz cos y� ky sin yÞ�: ð6:15Þ

The sum of these is

E ¼ x̂ 2i sinðky sin yÞE0 exp½iðot � kz cos yÞ�: ð6:16Þ

The boundary condition is that Ex ¼ 0 at both plates, at y ¼ 0 and y ¼ b. This is achieved if the angle

y is chosen to give

kb sin y ¼ np ð6:17Þ

where n is an integer. There may be several pairs of waves with different values of y which satisfy this
criterion, provided that

n � kb

p
: ð6:18Þ

Each pair constitutes an allowable wave pattern, or mode, which can propagate independently along

the guide in the z direction. The propagation constant kg along the guide is k cos y; substituting for y
from equation (6.17) we have

kg ¼ k2 � n2p2

b2

� �1=2

: ð6:19Þ

These modes are TE modes; note that there are components of the magnetic field in the direction of

propagation. In the TM modes, the magnetic field is wholly transverse and there is a component of the

electric field in the z direction. The modes are designated TEn and TMn according to their mode

number n. Equation (6.16) shows that the wave velocity vp of each mode is

vp ¼
o
kg

ð6:20Þ

where the subscript p indicates the phase velocity in contrast to the group velocity (see Chapter 4).

From equation (6.19) and recalling that in non-magnetic media, the separate harmonic waves of

equations (6.14), (6.15) both have phase velocity c=
ffiffi
�

p
r ¼ o=k,

vp ¼
cffiffi
�

p
r

1� n2p2

k2b2

� ��1=2

: ð6:21Þ

Let us discuss the simple case of a vacuum. We see that the phase velocity is greater than the free

space velocity c, and that it depends on the wave number k. The group velocity vg is given by

vg ¼
do
dkg

ð6:22Þ
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which from differentiating equation (6.19) with respect to o, and using do=dkg ¼ ðdkg=doÞ�1
, is

vg ¼ c
kg

k
: ð6:23Þ

The group velocity, as might be expected, is always less than c; the product vpvg ¼ c2.

The complete analysis of metallic waveguides must also involve boundaries in the x direction, to

form a rectangular waveguide.

6.3 The Slab Dielectric Guide

Awave may be guided along a dielectric slab, such as a sheet of glass, provided that it is bounded by a

material of smaller refractive index. The analysis is similar to that for the guide with conducting

plates, but there are different boundary conditions to consider. The wave amplitude does not fall to

zero at the boundary, and there is a component of the field beyond the boundary. We follow the same

procedure of analysing pairs of crossing waves, each allowable pair constituting a propagating mode.

It is convenient, however, to consider the pair of waves as a ray which is reflected to and fro between

the boundaries of the slab, as in Figure 6.3.

There must be total internal reflection at the boundary. From Snell’s law (Chapter 1) this means that

the angle of incidence must be larger than the critical angle (see Chapter 5), so that the ray angle must

be closer to the axis than ycrit given by

cos ycrit ¼
n2

n1
ð6:24Þ

where n1; n2 are the refractive indices inside and outside the slab. The pair of crossing waves

which constitute a mode is now represented as a single ray which is reflected to and fro across the

guide, as in Figure 6.4. After the two reflections shown in Figure 6.4 the ray CD must have the

same phase as the incident ray AB, so that it constitutes the single wavefront of equation (6.14).

The twice-reflected ray has travelled an extra distance,2 and in contrast to reflection at the

Figure 6.3 Dielectric slab waveguide, showing total internal reflection at the interface between refractive
indices n1 and n2

2In Figure 6.4 the angle y is shown larger than usual, to help visualize the geometry. Note the similarity to the

analysis of the plane-parallel plate in Chapter 9.
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conducting plate there is also a phase change �ðyÞ at each reflection. The extra path ABþBC for

the reflected ray is found from

ABþ BC ¼ A0Bþ BC ¼ 2b cos r ¼ 2b sin y: ð6:25Þ

The rays arriving at A and C must be in phase, as they lie on the same wavefront. This gives a phase

condition, including 2�ðyÞ for the two reflections:

2b sin yþ l1
2�ðyÞ
2p

¼ Nl1: ð6:26Þ

Aside from the additional term �ðyÞ, this is similar to equation (6.17); l1 now refers to the

wavelength l0=n1 in the dielectric. N is again a mode number; there is a set of ray directions which

can propagate, and each has its own group velocity. Equation (6.26) is a general condition for a

propagating mode. Its solution is best approached by numerical methods; note that �ðyÞ depends on
the polarization of the wave as well as the angle of incidence.

6.4 Evanescent Fields in Fibre Optics

The electric field does not fall to zero at the boundary of the dielectric slab, although the components

of the propagating wave are totally internally reflected and, following equation (6.24), there is no

refracted ray propagating away from it. The wave amplitude must therefore fall to zero in the y

direction. The wave outside the slab is an evanescent wave3 (Figure 6.5); we show that the amplitude

of this evanescent wave decays exponentially with distance y.

Consider a refracted wave transmitted across the boundary when the grazing– or off-surface–angle

y1 is more than the critical angle; y1 is the angle that the wave vector, i.e. the incident ray, makes with

Figure 6.4 The path difference between reflected rays in a dielectric guide. A0 is the image of point A as if
reflected in the lower surface of the guide. By congruent triangles, AA0 ¼ 2b and A0B¼ AB

3Evanescent is fleeting or vanishing, from evanesce: to fade away.
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the surface of the slab (Figure 6.6). As in Section 5.4, the amplitude of the refracted wave is Et, and it

propagates at angle y2 to the surface as a wave E2 with the form (compare equation (6.14))

E2 ¼ Et exp½ik2ðz cos y2 � y sin y2Þ�; ð6:27Þ

where we omit the factor expð�iotÞ. Since from Snell’s law n1 cos y1 ¼ n2 cos y2,

sin y2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21

n22
cos2 y1

s
ð6:28Þ

we can write equation (6.27) in terms of the angle of incidence as

E2 ¼ Et expðik2Þ
n1

n2
z cos y1 � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21

n22
cos2 y1

s !
: ð6:29Þ

For a ray beyond the critical angle, the square root term becomes imaginary, and we can write

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21

n22
cos2 y1

s
¼ �ia: ð6:30Þ

Figure 6.5 Cross-section of the electric field pattern Ey in a multi-mode dielectric guide, showing the
penetration of an evanescent wave into the cladding

y

z

q2

q1

Figure 6.6 Geometry of the refracted wave
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The wave outside the boundary (Figure 6.5) is now seen to be the evanescent wave4

ET ¼ Et expð�ak2yÞ exp ik2
n1

n2
z cos y1

� �� �
: ð6:31Þ

The wave propagates along the boundary, matching the guided wave inside the boundary, while the

amplitude decays exponentially in the y direction. The exponential decay constant ak2 is the inverse
of the penetration depth �, given by

��1 ¼ k2
n21
n22

cos2 y1 � 1

� �1=2

: ð6:32Þ

The evanescent wave can penetrate a significant distance into the cladding of an optical fibre, which

must be thick enough for the amplitude to fade away almost to zero. In a silica fibre with

Figure 6.7 Electric field patterns in the three lowest order linearly polarized modes propagating in a circular
cross-section waveguide. The modes are designated (a) in terms of linear polarization and (b) in terms of TElm
and TMlm transverse modes for meridional rays and hybrid modes HElm and EHlm for skew rays; (c) shows the
electric field distributions, and (d) the electric field intensity distributions. (From J.M. Senior, Optical Fiber
Communications, Prentice Hall, 1992)

4The solution with an exponentially growing wave is clearly unphysical.
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n1=n2 ¼ 1:01, for an angle close to the critical angle, and for a wavelength of 1.3 mm, the value of � is
about 2 mm.

A considerable fraction of the wave energy travelling along an optical fibre is transmitted in the

evanescent wave. The cladding must therefore be a glass with as high an optical quality as that of the

fibre core, so as to avoid transmission losses.

6.5 Cylindrical Fibres and Waveguides

The main principles of a slab or rectangular waveguide may be applied to a cylindrical dielectric

guide without modification except for the detailed pattern of the propagating field. As before, we

require monochromatic solutions of Maxwell’s equations in the form of the propagating fields

E ¼ E0ð�; �Þ expð�ibzÞ
B ¼ B0ð�; �Þ expð�ibzÞ

ð6:33Þ

where a common factor of expðiotÞ is understood. The analysis requires the wave equations for E and

B to be written in a cylindrical coordinate system, with �; � replacing x; y. Solutions which satisfy the

boundary conditions resemble those for the slab guide, showing discrete modes which will propagate

for any given free space wavelength, provided it is less than a critical wavelength. The field patterns

for each mode are in the form of Bessel functions rather than the sine and cosine functions in the

rectangular guide.

Figure 6.7 shows some of the field patterns in the simplest case of a cylindrical dielectric

waveguide. In each mode there must be a small component of electric or magnetic field along the

axis, and the modes are often distinguished in terms of the field component which is wholly

transverse as TElm or TMlm modes, which have meridional5 travelling rays with radially symmetric

field distributions. The two-dimensional cross-section of the cylindrical waveguide requires two

integers l;m to designate the modes. The integer numbers indicate the number of azimuthal

(circumferential) nodes ðlÞ and the number of radial nodes ðmÞ that are in the field pattern. The

TE modes have zero axial electric field (Ez ¼ 0) and the TM modes have zero axial magnetic field

(Hz ¼ 0). Skew ray propagation leads to hybrid modes HElm and EHlm in which Ez and Hz are non-

zero, with the designation depending on whether the axial H or E field makes the dominant

contribution to the transverse field. The set of modes can be approximated by a set of linearly

polarized (LPlm) modes. In the cylindrical guide the modes are designated according to the order of

the Bessel function describing the field pattern, as shown in Figure 6.7. In a rectangular guide each

mode is designated according to the number of cycles across the guide; the simplest mode in the

rectangular waveguide is designated TE01.

In a practical fibre, with dielectric cladding, the field extends into the cladding as an evanescent

wave. The detailed field configuration depends on the form of the interface between the fibre and the

cladding; solutions can be obtained for a step change in refractive index, but in practice there are

advantages in a more gradual transition of refractive index, the graded index involving a more

complicated analysis.

We have already seen how the boundary conditions of dielectric slab guides affect the field patterns

as compared with those of waveguides with conducting walls. The differences are more important in

5A meridional ray is one that lies in a plane containing the axis of the fibre. Any non-meridional ray is called

skew, and does not pass through the fibre axis.
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optical fibres, since they are usually clad with a dielectric with refractive index n2 which is only

slightly below n1, the refractive index of the guide core itself. This has the advantage that rays at a

large angle to the direction of propagation are not then internally reflected, and only low-order modes

are propagated (see equation (6.18)); in the limit, there is only one propagating mode. Such a single

mode fibre is particularly important in long-distance communications, where the difference in group

velocity between modes is a severe disadvantage. Single mode fibres must have a core diameter less

than a few wavelengths, and a small change in refractive index from core to cladding. While single

mode fibres provide large bandwidth, e.g. for optical communications, the multi-mode fibre has a

larger core radius than the single mode fibre, so that it is easier to launch light into the fibre and

connections between similar fibres can more readily be made.

Exact analysis of the maximum diameter for a single mode fibre is tedious, but an approximate

analysis for a slab dielectric is easily done in terms of a ray in the slab at the limiting angle ycrit for
internal reflection. Then n1 cos ycrit ¼ n2. If there are N half wavelengths in the wave pattern across a

slab with thickness b, then, based on equation (6.26) with �ðycritÞ ¼ 0, which follows from equations

(5.32) and (5.33), b sin ycrit ¼ Nl1=2, where l1 is the guide wavelength l0=n1, giving N as

N ¼ 2b

l0
ðn21 � n22Þ

1=2: ð6:34Þ

In practice the two refractive indices differ by only a small amount and may be written as n and

nþ�n, so that ðn21 � n22Þ
1=2 ’ ð2n�nÞ1=2. The maximum thickness bmax of a slab which carries only

a single mode is

bmax ¼
l0

2ð2n�nÞ1=2
: ð6:35Þ

A similar but more complicated analysis for cylindrical fibre guides yields the useful parameter

known as the V number, which for a step-index guide with radius a is

V ¼ 2pa
l0

ðn21 � n22Þ
1=2: ð6:36Þ

The analysis shows that if this V number is less than 2.405, only a single mode can propagate. This

occurs for a wavelength l0 � 2paðn21 � n22Þ
1=2=2:405. The fibre is known as single mode or

monomode. This requires very thin fibres: for example, if n1 � n2 is 20% of n1, the maximum

diameter for a single mode fibre is only 4 vacuum wavelengths. For a cylindrical waveguide the

number 2.405 corresponds to the first zero of the Bessel function which is the solution of the wave

equation for the fundamental mode. For large values of V the total number of modes M (including

both polarizations) for a step-index fibre is

M ’ p2

2

2a

l0

� �2

ðn21 � n22Þ ¼
V2

2
: ð6:37Þ

The total number of modes is proportional to (fibre diameter/free space wavelength)2. A step-index

fibre with a radius a ¼ 25 mm, n1 ¼ 1:520; n2 ¼ 1:505 and operating at a vacuum wavelength of 2mm
is able to propagate about 140 modes. Modes become unguided or cut off when the mode field in the

cladding changes from being an evanescent field to a real field carrying power. For a field varying as
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exp½�iðot � blmzÞ� with propagation constant blm for the (lm) mode, the mode becomes cut off when

blm ¼ bc, where bc is the propagation constant in the cladding.

6.6 Numerical Aperture

Although the rays in an optical fibre are at a small angle to the axis, they spread to a wider angle as

they emerge at the end of the fibre. This is important in matching light detectors to fibres, where for

efficient light collection the angle accepted by a detector should be approximately the same as the

emergent light cone of the guide; similarly, in injecting light into a fibre efficiently the light cone from

the source should match the acceptance angle of the fibre. The numerical aperture determines the

maximum acceptance angle of the fibre. For a fibre with refractive index n1 and cladding with

refractive index n2, the largest angle ycrit within the fibre is shown in Figure 6.8, where the refracted

ray is along the surface. Applying Snell’s law to a meridional ray (a ray crossing the axis of the

cylinder),

sin ynli ¼ cos ycrit ¼
n2

n1
: ð6:38Þ

A ray at this limiting angle enters a plane face at the end of the slab at angle ya to the normal, as

shown in Figure 6.8. Then if the refractive index outside the fibre is n0

n0 sin y
nl
a ¼ n1 sin ycrit ¼ n1 1� n2

n1

� �2
" #1=2

: ð6:39Þ

All rays inside the acceptance angle ynla will propagate within the slab.

The limited acceptance cone is usually expressed in terms of the numerical aperture (NA), which

characterizes a cone of rays in any optical instrument, defined as NA ¼ n0 sin y
nl
a . In this case

NA ¼ ðn21 � n22Þ
1=2: ð6:40Þ

The numerical aperture determines for light the maximum acceptance angle of the fibre. A useful

simplification can be made when the relative refractive index difference � ¼ ðn1 � n2Þ=n1 is small:

NA ’ n1ð2�Þ1=2: ð6:41Þ

Typically n � 1:4, and the fractional step� � 1%, giving NA � 0:2 and an acceptance cone with half
angle around 10�.

Figure 6.8 The acceptance angle for light entering a dielectric guide
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6.7 Materials for Optical Fibres

The most important requirement for the glass in an optical fibre is a low transmission loss.

Transmission loss is usually measured in decibels per kilometre (dB km�1), as in communications

engineering.6 A slab of ordinary silica glass usually has a loss much greater than 100 dB km�1; this is

due to absorption by impurities, particularly metallic ions such as iron, chromium and copper. Pure

silica glass has remarkably low losses, below 1 dB km�1 at infrared wavelengths between 1.0 and

1.8 microns. Beyond those wavelengths the losses increase sharply (Figure 6.9). In the visible region

the principal losses are due to elastic Rayleigh scattering from inhomogeneities frozen into the glass;

this gives a loss increasing as l�4 (see Chapter 19). There are also losses in the ultraviolet region due

to electronic transitions. The increase in absorption at longer infrared wavelengths is the residual

effect of vibrational states of the lattice and absorption bands such as that at 9.2 microns, due to a

resonance in Si–O bonds. At higher transmitted powers additional losses may result from stimulated

Brillouin and Raman scattering; these are inelastic scattering processes in which the scattered light

undergoes a change in wavelength (see Chapter 19).

Within the window between 1.0 and 1.8 microns there is an appreciable rise in attenuation centred

on 1.38 microns. This is related to water dissolved in the glass; the resonance actually occurs in the

hydroxyl ion (OH�) at 2.7 microns with a second harmonic at 1.38 microns. However, the practical

situation is that there are two low absorption bands in silica glass, at 1.3 and 1.55 microns, the longer

wavelength band having attenuation loss of down to 0.2 dB km�1.

Losses in optical fibres may also be due to geometric imperfections introduced in the manufactur-

ing process, and from sharp bends which the guided waves may not be able to follow. The critical

condition is that the guided wave in the outer part of the cladding should not be required to travel at a

speed greater than the velocity of light in that medium. The allowable radius of a bend depends on the

mode and the difference in refractive index at the core interface; typically the losses are small for a

radius greater than around 30mm.

Figure 6.9 Transmission loss as a function of free space wavelength in high-quality silica glass

6Loss in decibels is 10 log10(ratio of input power to output power). It is useful to remember that 10 dB is a

factor of 10, 3 dB is close to a factor of 2, and 1 dB loss is approximately 20%.
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The simple cladding of a fibre with a different material results in the stepped refractive index

profile of Figure 6.10(a). There is, however, an important advantage in fibres manufactured with a

gradient of refractive index, decreasing from the axis to join the lower refractive index of the

cladding, as shown in Figure 6.10(b). Such a graded-index (GRIN) fibre can be made by allowing the

cladding to diffuse into the fibre, but the manufacturing techniques which we describe below allow a

more precise control of the refractive index profile. The advantage of a graded-index fibre, as

described below, is that the difference in velocity of the allowable modes is minimized.

An example of a graded-index fibre is one in which the refractive index has a parabolic radial

dependence. In this case for a fibre with a core radius a

nðrÞ ¼ n1½1� ðr=aÞ2�1=2: ð6:42Þ

Here n1 is the refractive index on the axis. A more general graded-index function is of the form

	 Core: nðrÞ ¼ n1½1� 2�f ðr=aÞ�1=2 for r < a.

	 Cladding: nðrÞ ¼ n1½1� 2��1=2 ¼ nc for r > a.

The quantity � ¼ ðn21 � n22Þ=2n21 � ðn1 � n2Þ=n1 and, over 0 � r � a, f ðr=aÞ increases monotoni-

cally from f ð0Þ ¼ 0 to f ð1Þ ¼ 1.

Expressing f ðr=aÞ ¼ ðr=aÞa describes an a profile, with the parabolic profile for a ¼ 2 and the step-

index profile for a ¼ 1. Among all the a profiles the parabolic case a ¼ 2 is distinguished by its

ability to nearly eliminate the modal dispersion. A light ray in a fibre with parabolic nðrÞ oscillates
sinusoidally across the axis (see Problem 6.3).

Analytical solutions for the propagation of EM waves in the cylindrically symmetrical dielectric

waveguide in the form of specified functions can only be obtained for the step-index fibre and the

parabolic graded-index profile.

Core

Cladding

2a
Core diameter

n

n n1

n1

(a)

(b)
n2

n2

Figure 6.10 Refractive index profiles of (a) step and (b) graded refractive index fibres
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For the a profile the number of modes that can propagate is

M � p2

2

� �
a

aþ 2

� �
2a

l0

� �2

ðn21 � n22Þ: ð6:43Þ

Then for a ¼ 2;M � V2=4, half that for the step-index fibre.

The absorption of silica increases for wavelengths greater than 2.2 mm. Other fibres have been

developed for infrared transmission based on specialist glasses; these include fluoride, germanium

dioxide, chalcogenide and crystalline halide glasses. Because of their greater attenuation compared

with silica these are suitable only for short-distance applications such as optical fibre sensors. Optical

fibres may be made from polymer materials in which the step-index or graded-index core is an acrylic

resin and the cladding is a fluorinated polymer. Although the transmission losses of typically 50–

150 dB km�1 are greater than for silica fibre, they can be made with large core diameters up to 1mm.

These are able to provide bandwidths in the range of 10MHz km (step-index) to 500MHz km

(graded-index). A multi-mode step-index fibre made up of a hybrid of a silica core and a polymer

cladding (PCS) fibre provides lower attenuation than the polymer core fibre. An important application

of fibre optics is in the transmission of high-power laser radiation from the laser to its point of

application over short or long distances. The silica fibre is suitable to transmit wavelengths over

200 nm to 2.0 mm, particularly for the 1.06 mm Nd:YAG laser. Specialist fibres have been developed

for longer wavelengths, including the 10.6 mm CO2 laser, but with more severe limitations on their

power handling capability. Typical optical power delivery applications of fibres are in robotic laser

welding in the automotive industry and in laser surgery.

6.8 Dispersion in Optical Fibres

Fibre optic communication systems usually use pulses of light. A typical train of pulses might be

transmitted as in Figure 6.11(a), and after travelling for a large distance might appear as in

Figure 6.11(b). In this figure the amount of pulse spreading is close to the limit which would still

allow the signal to be decoded. Pulses will start to merge if they are separated by less than the

temporal width �� acquired through dispersion. This limits the communication bandwidth to a

maximum of nmax ¼ 1=�� .
Pulse spreading is inevitable in multi-mode fibres, although its effect can be reduced in graded-

index fibres. There are, however, important effects in the single mode fibres used for long-distance

communications, due to the spread in travel times over the wavelength band of the pulsed light. This

may not matter if a narrow wavelength band is used, as in a laser light source, but if several adjacent

(a)

(b)

Figure 6.11 The effect of dispersion in travel time on a train of pulses
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spectral channels are used, or a wideband LED source, it is important to minimize the differences in

travel time. We first examine the spread in travel time in a multi-mode fibre.

A simple way of appreciating this effect is illustrated in Figure 6.12, where the two rays represent

two different modes; as we saw in the analysis of a slab guide, the higher the order of the mode, the

larger the inclination of the equivalent rays to the axis. Here light pulses travel along the axis at

velocity c=n1, while an oblique ray at angle y to the axis only progresses at the projected velocity

c cos y=n1. For a step-index fibre, equations (6.38) and (6.40) allow the difference d� in travel time

between rays on-axis and rays at the maximum allowed angle, over a length L, to be expressed in

terms of the numerical aperture NA as

d� ¼ Ln1

c

1

cos ycrit
� 1

� �
’ Ln1�

c
’ LðNAÞ2

2n1c
: ð6:44Þ

The bandwidth of the step-index fibre is limited by intermodal dispersion to about

1=d� ¼ c=ðLn1�Þ; for � � 10�3, this is about 100MHz km/L. This demonstrates how the

information-carrying capacity, which is proportional to the bandwidth, deteriorates with increas-

ing length. In a graded-index (GRIN) fibre this difference in travel time is reduced or eliminated;

the path of the more oblique ray, although longer, is mainly in glass with a lower refractive index,

and the increased speed compensates for the extra path length (Figure 6.12). The sinuous path

followed by a meridional ray in a GRIN fibre is the subject of Problems 6.3 and 6.4 at the end of

this chapter.

Although multi-mode dispersion is significantly reduced in GRIN fibres, in practice it confines the

use of multi-mode fibres to comparatively short or narrowband communication links and local area

networks. Long-distance communications must use single mode fibres, where dispersion effects are

smaller.

There are two distinct causes for wavelength dispersion in travel time in a single mode fibre; these

are respectively the material dispersion (the intrinsic dispersion of the glass) and waveguide
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Figure 6.12 Light paths in two types of fibre: (a) step index, (b) graded index
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dispersion, which is inherent in the waveguide geometry. The travel time for a pulse in the fibre is

determined by the group velocity

vg ¼
do
dk

: ð6:45Þ

Consider first the effect of material dispersion, due to the variation of refractive index n with free

space wavelength l0. The group velocity vg is c=ng, where ng is the group refractive index given as a

function of wavelength by differentiation as follows:

o ¼ 2pc
l0

;
do
dl0

¼ � 2pc

l20
ð6:46Þ

k ¼ 2pn
l0

;
dk

dl0
¼ 2p � n

l20
þ 1

l0

dn

dl0

 !
ð6:47Þ

do
dk

¼ do
dl0

dl0
dk

¼ c

n� l0dn=dl0
ð6:48Þ

giving

ng ¼ n� l0
dn

dl0
: ð6:49Þ

The difference in travel time ��mat for light pulses centred at two wavelengths separated by �l0, for
a length L of fibre, is

��mat ¼
L

c

dng

dl0
�l0 ð6:50Þ

giving

��mat ¼ �ðL=vgÞ ¼ � L

c
l0

d2n

dl20
�l0: ð6:51Þ

Derived from equation (6.51), the material dispersion parameter

1

L

��mat

�l0
¼ � l0

c

d2n

dl20

is quoted in units ps nm�1 km�1.

The group velocity dispersion in transmission delay ð1=LÞðd�=dl0Þ is shown in Figure 6.13 for

wavelengths near 1 micron in silica glass. Fortunately the dispersion is very small at wavelengths

close to the transmission band at 1.3 microns; this band has therefore been preferred for long-distance

communications with a broad bandwidth. Techniques are, however, available for removing the effect

of dispersion, and the low-loss band at 1.5 microns is also now in general use for links with

bandwidths of several gigahertz. The importance of dispersion delay may be illustrated by

considering a fibre optic cable at 0.85 microns, where Figure 6.13 gives a comparatively large

delay of 98 ps nm�1 km�1. An LED source (see Chapters 17 and 18) at this wavelength might have a
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spectral width of 50 nm, so that the dispersion in delay would be 5 ns per kilometre. In a

communications link of 1000 km this would spread a narrow pulse to a width of 5ms, limiting the

bandwidth to about 0.2MHz.

The second cause of dispersion in a single mode fibre is waveguide dispersion. This arises as a

result of dependence of the group velocity on the ratio between the core radius and the wavelength.

An exact analysis is complex, since the effect depends on the refractive index profile. For a step-index
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Figure 6.13 The dispersion in group velocity as a function of wavelength
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fibre the result is usually expressed as a delay ��w related to the parameter V, introduced in Section

6.5 above, by7

��w ¼ L

c

�l0
l0

� �
ðn2 � n1ÞDV ð6:52Þ

where the dimensionless coefficient D is a function of the V-number, as shown in Figure 6.14. For a

single mode fibre, assuming a source wavelength l0 ¼ 1 mm and linewidth �l0 ¼ 1 nm, the

contribution to pulse broadening from waveguide dispersion is ��w=L ’ 2 ps km�1. For silica and

a wavelength l > 1:3 mm the sign of waveguide dispersion is opposite to that for material dispersion.

Then a dispersion-shifted fibre can be fabricated in which the zero-dispersion wavelength is able to be

moved to a wavelength near 1.55 mm where, as seen in Figure 6.9, the fibre loss is a minimum.

The importance of these various effects on the bandwidth of long-distance communications has

prompted much analysis and experimentation. The results may be expressed as a product of

bandwidth and fibre length. A typical step-index fibre bandwidth is less than 100MHz for a length

L of 1 km, due to multi-mode propagation. In a GRIN fibre, where the effects of multi-mode

propagation are reduced, the bandwidth may be increased typically to 1GHz km/L. The performance

of single mode fibres can achieve in excess of 3GHz km/L.

A single fibre can be used to carry simultaneously several signal channels on different optical

wavelengths, giving an increased overall signal bandwidth. This technique of wavelength division

multiplexing (WDM) requires optical filters at the transmitter and receiver.

6.9 Dispersion Compensation

Comparison of Figures 6.9 and 6.13 shows that dispersion is comparatively large at one of the

wavelength bands with the lowest losses, i.e. at 1.55 mm. This band can nevertheless be exploited for

long-distance broad-bandwidth communication by the use of compensating devices, which introduce

a delay with equal and opposite dispersion. The delay is introduced by diverting the light signal into a

short reflecting fibre whose effective length varies rapidly with wavelength.

Selective reflection of light in a narrow wavelength band can occur in an optical fibre if a periodic

structure can be created along the length of the fibre. The effect is similar to the selective reflection of

X-rays by a crystal lattice, which we analyse in Chapter 11. The periodic structure is an artificially

constructed cyclic variation of refractive index, with a half-wavelength period and extending for

many wavelengths. Figure 6.15 shows a typical plot of reflection coefficient against wavelength for

such a structure. The maximum reflection occurs when the small reflected waves from each peak in

refractive index add exactly in phase. The selectivity of the reflection, and the resemblance to Bragg

reflection of X-rays in crystals, lead to the name fibre Bragg gratings for such devices, which are used

as wavelength-selective reflection filters.

The next stage is to vary the spacing linearly along the fibre, so that different wavelengths are

reflected at different distances. This then becomes a dispersive element, in which the travel time

in a return journey depends on wavelength (Figure 6.16). The variation in reflection wavelength,

and therefore in frequency, has become known as a chirp, and the device as a chirped

Bragg grating (by analogy with the high-pitched sound emitted by some birds and bats which

7See A.H. Cherin, An Introduction to Optical Fibers, McGraw-Hill, 1985, p. 103.
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is accompanied by an increase in pitch). The magnitude of dispersion-induced delay can be

made to match that of tens of kilometres of normal fibre in a device less than a metre in length

overall.

Dispersion compensation may be achieved by the insertion of a length of fibre which has an

equal and opposite dispersion–length product to that of the transmission fibre. The increase in the
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Figure 6.15 Bragg grating. (a) Periodically varying refractive index in a fibre. (b) The wavelength-dependent
reflection coefficient
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Figure 6.16 Dispersion compensation. (a) Grating with periodicity varying along the fibre. (b) The variation
with wavelength in travel time for a return journey
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length of the fibre introduces additional loss which may be compensated by extra fibre

amplification.

Such a dispersive element can be inserted in a fibre optic communication link by using a

directional coupler shown diagrammatically in Figure 6.17. The coupler consists of two light guides

running close together so that their evanescent fields overlap. A signal in one of the two guides is then

progressively transferred to the other as shown in Figure 6.17(b). The length of the coupler is chosen

so that half the signal from the input port A is transferred into the dispersive reflector at port C; the

other half is lost in an absorber on port B. The returning signal from C, now compensated for

dispersion, is then split again, half returning to the input fibre at A and half proceeding to the detector

by the fourth port D. This is the required ‘de-dispersed’ signal.

Methods of imposing a periodic variation of refractive index along the dispersive fibre element are

shown in Figure 6.18. A small but sufficient change in index (of order 1 in 104) can be induced in

germanium-doped silica by subjecting the glass to a very intense flash of ultraviolet light. The

periodic structure is created by forming an interference pattern within the fibre core from two

coherent laser light beams incident at an angle to the fibre axis, as shown in Figure 6.18(a) (compare

Figure 4.19). This is a form of holographic writing (Chapter 14). Ultraviolet light with lUV � 240 nm

is required for the writing beams since the glass of the fibre is photosensitive in this region; this may

be obtained by harmonic generation from a longer wavelength laser, or it may be directly produced by

a pulsed ultraviolet excimer laser (Chapter 15). The design Bragg wavelength is dependent on lUV
and on the angle between the interfering beams, and can be varied from lUV to longer wavelengths.

The regularly spaced element in Figure 6.15 is used as a selective filter; by using a curved wavefront

as in Figure 6.18b, the technique is extended to make the gradient in fringe spacing required for the

dispersive element.

The holographic method of writing the grating, using a wavefront amplitude beam splitter to create

the two beams, is technically difficult since the paths of the two writing beams must be kept constant

to a fraction of a wavelength. An alternative method illustrated in Figure 6.18(c) is to use a form of

transmission diffraction grating, termed a phase mask, which has surface relief acting as diffracting

elements. This is placed a short distance from the fibre, so that an interference pattern develops

between the two first-order diffracted beams at the fibre core.

Input
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C z
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S S1(z)

S2(z)
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Figure 6.17 (a) Directional coupler used to connect a dispersive reflector into a fibre optic communication
system. (b) The exchange of light signal between the coupled light guides. The signal S1 entering at port A is
divided between the two fibres as S1ðzÞ, S2ðzÞ, as a sinusoidal function of the length z
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6.10. Modulation and Communications

Modulation of amplitude, phase, polarization or frequency of light in a fibre allows information to be

encoded onto and, after transmission, extracted from the beam. Modulation of amplitude (or

irradiance) is used in optical communications for analogue or digital encoding of information. It is

also used in fibre optic sensors, to generate pulsed illumination, for mode locking of fibre lasers

(Chapter 16) and in pulsed range-finding or LIDAR systems. Amplitude (or irradiance) modulation is

Ultraviolet laser beams

Optical fibre

Core

Interference fringes

Spherical wave

(a)

(b)

Fibre

Plane
wave

Ultraviolet laser wavefront

Fibre core

Phase grating

Crossing diffraction wavefronts
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Figure 6.18 Creating the periodic variation in refractive index from an interference pattern: (a) with uniform
spacing; (b) a curved wavefront providing a graded spacing; (c) a phase mask in contact with the fibre
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usually achieved by modulating the light source, e.g. semiconductor laser or LED, externally to the

fibre. Direct modulation of lasers is described in Chapter 17.

The very high frequency of visible and near-infrared light � 1014 Hz gives the potential for

communication channels of very high information-carrying capacity, greater by a factor of about 104

than for microwave and radio wave frequencies. The optical fibre provides a transmission medium

immune to environmental degradation and with gigahertz bandwidths. An outline of a fibre optic

communication link is shown in Figure 6.19. In the transmitter information is impressed on a laser or

LED beam by modulation. The modulated output is transmitted by the fibre to a receiver, most

usually a photodiode, that generates an electric current in response to incident light (see Chapter 20).

At the receiver the signal is amplified and demodulated to provide the output signal. Typically the

signal is pulsed at a defined rate, known as the bit rate; an ‘on’ pulse represents a digital ‘1’ and an

‘off’ pulse represents a ‘0’. The information-carrying capacity is determined by the bit rate, which is

limited by the rate at which the signal can be switched between ‘1’ and ‘0’. Following Section 4.12,

Fourier analysis tells us that this in turn is determined by the bandwidth of the light signal.

At the very high bit rates used in fibre communications, it is essential to transmit sufficient

photons per bit; random fluctuations in number within a single bit must be small enough that a ‘1’

signal does not fall below a threshold and appear as a ‘0’. The fluctuations in photon number are

random, and there is always a finite probability of such an error; thus for a data rate of 1 Gbit s�1

about 1000 photons per bit are required to achieve a bit error rate of 10�9. In addition to the

statistical random nature of the photodetection mechanism, the required photon number per bit is

dependent on the electronic receiver sensitivity; since this is degraded by noise in the detector and

amplifier, the photon number must be increased accordingly. In long-distance optical fibre

communications the signal is steadily attenuated but can be restored using the erbium-doped

fibre amplifier (EDFA) described in Chapter 15. A short length of EDFA can be spliced into the

transmission fibre, with in-line optical isolators to prevent back reflection into the laser source;

each such amplifier provides about 20 dB gain in the wavelength band 1530–1570 nm. Long-

distance communication systems have been standardized internationally to have channel data rates

of 155 and 622Mbit s�1 and 2.5, 10 and 40Gbit s�1, to be followed in the future by a 160Gbit s�1

system.

6.11 Fibre Optical Components

Devices which generate, amplify, control and detect light in fibre optic systems are described in many

texts such as those listed in Appendix 5. Fibre optical components may be grouped into active and

Fibre link
Laser Modulator Detector Demodulator

Input
information

Transmitter Receiver
Transmitted

information

Figure 6.19 Fibre optic communication link
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passive components. Active components require an external power source or signal to function: these

include lasers, amplifiers, detectors, modulators, frequency shifters and polarization controllers.

Passive components include connectors, couplers, directional couplers, filters, reflectors, isolators,

polarizers and polarization retarders. Joins between fibres can be made with low loss down to 0.1 dB,

and these may be permanent or demountable. A permanent joint is termed a splice and may be formed

by fusing the fibre glass or by glueing. Demountable joints are formed by connectors, either by

bringing two fibres in close proximity (butt joint) or by a lens arrangement to image one fibre end

onto the other. Fibre beam splitters and combiners (such as the directional coupler described in

Section 6.9 above) may be made by bringing the cladding of two fibres in close contact over a length

of a few millimetres. The fibres are then fused by heating, while drawing the softened fibre to make a

taper. Fibre optic switches selectively direct optical signals between different fibres. The switching

Figure 6.20 (a) Scanning electron micrograph of a cleaved end face of a large mode area photonic crystal fibre.
The fibre shown here as a core diameter of 22.5 mm and a relative air hole diamter d=� ¼ 0:11, and is monomode
at all wavelengths l > 458 nm at least. (b) The central hole pattern. (c) Contour map of the near field irradiance
distribution for the guided mode in the fibre shown in (a) at a wavelength of l ¼ 458 nm. The contours are
plotted at 10% intervals in the modal field intensity distribution (J. C. Knight, University of Bath)
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can be classified as optomechanical, electronic or photonic. Optomechanical switches include a

mechanical movement of a component such as the fibre, prism or lens to deflect the beam. Electronic

switches use an electro-optic effect and photonic switches use electro-optic or acousto-optic switches

in an integrated optics crystal of lithium niobate (LiNbO3). The fibre Bragg grating described in

Section 6.9 for dispersion compensation has numerous other applications which utilize the high

reflection coefficient and low insertion loss.

6.12 Hole-Array Light Guide; Photonic Crystal Fibres

The regularly spaced variation in refractive index along the length of a fibre, which is used in the

Bragg filter (Section 6.9), may be extended to two or three dimensions to make a photonic crystal

lattice. If the spacing between the refractive index discontinuities is comparable with the wavelength,

the propagation of light waves within the lattice is subject to conditions similar to those of X-rays

propagating in a crystal lattice, as described in Chapter 11. An example with practical use in fibre

optics is a regular hexagonal array of airholes along the length of an otherwise uniform silica glass

fibre. Such an array can be fabricated with a single missing hole, as seen in the micrograph of the

cross-section (Figure 6.20). The intact hexagonal region then acts as a light guide, in which light is

trapped as it is in the core of a conventional fibre.

For light waves travelling in the direction of the fibre axis, the array of holes has the effect of

lowering the refractive index. The central hexagon therefore acts as the core, and the surrounding

array as the cladding, as in the conventional guide where the difference in refractive index is achieved

by chemical doping. The behaviour of the hole-array fibre depends on the ratio of the diameter d to

the spacing� of the holes (Figure 6.21), but if this ratio is less than about 0.2 light will be propagated

Figure 6.21 Photonic crystal fibre. The small circles represent airholes running the length of the fibre. The
central broken circle is the fibre core, which may be solid or hollow
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in only a single fundamental mode; this applies over a wide range of wavelengths. An illustration of

the distribution of irradiance across the core is shown in Figure 6.20.

The two main types of photonic crystal fibre are illustrated in Figure 6.21. The index-guiding type

described above has a solid core surrounded by cladding containing the array of airholes, while the

air-guiding type has a hollow core. In this case the periodic pattern of airholes creates conditions in

which confinement and guiding is provided by Bragg reflection.

An important advantage of such a fibre is that a single mode propagation can be achieved over a

large cross-section of the core, so that the energy density can be very much lower than in the

conventional fibre, avoiding the non-linear effects associated with the transmission of higher powers.

Single mode operation has been demonstrated in a fibre with core diameter up to 50 free space

wavelengths.

6.13 Optical Fibre Sensors

Optical fibre sensors have the general characteristics of high sensitivity, nonelectrical method of

operation, immunity to electromagnetic interference, low power consumption, small size and weight

and may readily be multiplexed. This has led to a remarkably widespread range of applications in the

measurement of temperature, pressure, current and voltage, magnetic field, strain, chemical

composition, position, movement and vibration, rotation, acoustic waves, microparticle sizing and

fluid flow.

The main parameter which is exploited in fibre optic sensors is propagation time, as measured by

the phase of an emergent wave. Light travelling in a fibre of length L undergoes a phase delay of

� ¼ kneL, where k ¼ 2p=l0 and ne is the effective refractive index of the core. This may be written

� ¼ bL with b ¼ 2pne=l0 being the propagation constant. The effective refractive index is the ratio

of the propagation constant of light in a vacuum to that propagating in the LP01 modes (see Section

6.5). A change in � can be related to a change in the fibre length or to a change in the fibre

propagation constant, which might for example be induced by stress:

�� ¼ b�Lþ L�b: ð6:53Þ

The main contribution to �b is from a change in the refractive index, �b ¼ @b=@n:�n. Then

�� ¼ b�Lþ L@b=@n:�n ¼ 2p=l0ðn�Lþ L�nÞ: ð6:54Þ

Many sensors exploit a change in length L induced by stress; for example, the fibre can be wrapped

tightly round a piezoelectric cylinder, which expands when a voltage is applied.

Changes �� in emergent phase are measured by comparison with a light wave from the same

source propagated down an undisturbed fibre path. The two waves are combined in an interferometer,

such as the Michelson, Mach–Zehnder and Sagnac interferometers, described in Chapter 9, in which

fibres replace the open paths. It is possible using such an interferometer to measure phase changes

equivalent to about 10�6 of a wavelength.

6.14 Fabrication of Optical Fibres

A crude glass fibre is easy to make by heating and softening the centre of a glass rod and

pulling the ends apart. A useful fibre, with a constant diameter and consisting of a core and
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cladding, needs a more sophisticated technique. Two methods are available: drawing from a

preformed thick rod, which already contains the core and cladding, and drawing from a concen-

tric double crucible in which the two components are separately melted. The temperature (1700�C
to 2000�C) at which pure silica has a workable viscosity is considerably greater than that for

common glass (around 1000�C). In the double crucible method the properties of the core

and cladding glasses must be reasonably well matched so that they can flow together and not

be under stress when they cool. A controlled gradient of refractive index, which is essential

in most applications, is obtained by drawing from a ‘preform’ which already contains the

graded index.

A preform with graded index can be made by diffusing various dopants such as GeO2 and P2O5

into silica glass. Both these dopants increase the refractive index; typically an addition of 10%

raises the index from 1.46 to 1.47. The addition of fluorine lowers the refractive index. The

dopants can be added by gas deposition, termed chemical vapour deposition, onto the inside of a

tube of pure silica; the tube is collapsed later by melting to create the preform. The ‘hole-array’

fibre described in the previous section is drawn from a preform which is assembled from thin

hexagonal rods, which themselves have been drawn from larger diameter hollow tubes. A single

solid rod is packed into the centre to form the core. The preform is held at the top of a long fibre-

pulling tower; when the preform end is heated it may be drawn down to a fibre and collected on a

drum.

Drawing the fibre must be controlled so that the diameter is maintained within about �2%. After

the main drawing process an extra coating of some plastic material is added to protect the fibre. All

these processes are adaptable to continuous operation, which typically runs for some days at a rate of

up to 1m s�1, i.e. more than 80 km per day.

Problem 6.1

(i) Light from the end of an optical fibre in air forms a patch of light radius 3 cm on a screen 10 cm away. Find

the numerical aperture. If the core refractive index is 1.5, find the fractional step in index ðn1 � n2Þ=n1
between the core and the cladding.

(ii) A single mode optical fibre has core diameter 4 mm and step in index �n=n ¼ 2%. Using equation (6.36)

find the minimum wavelength inside the core, l0=n1, which will propagate in a single mode.

(iii) If the loss in a fibre is 0.5 dB km�1 and there is an added loss of 1 dB at joints which are 10 km apart, find

the necessary interval between amplifiers when the transmitter power is 1.5mW and the detector level is

2 mW.

(iv) From equation (6.44) find the dispersion � in propagation time for a fibre 5 km in length with ungraded

index n ¼ 1:5 and � ¼ 1%. What bit rate BT could be used in this length if BT ¼ 1=2�?

(v) The effect of material dispersion on pulse travel time in a fibre depends on the bandwidth of the light source.

Find the dispersion ��mat=L (i) for an LED with bandwidth 20 nm and (ii) for a laser with bandwidth 1 nm

when using a glass fibre at l ¼ 0:85 mm where l2d2n=dl2 ¼ 0:025.

Problem 6.2
Suppose every meridional ray in a GRIN fibre follows successive arcs of a circle, with the centre of the circle

displaced by distance r1 from the axis. A complete oscillation about the axis occurs in length �. The refractive

index on-axis is n1. (a) Find the refractive index profile nðrÞ for the fibre, (b) prove that r1 is the same for all rays,
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(c) find the arc’s radius a, (d) find the turning point distance from the axis rt, and (e) find the ray’s axis-crossing

angle �1.

Problem 6.3
In Problem 1.6 of Chapter 1, we asked the reader to derive an approximate equation 1=R ¼ n�1dn=dy for the

radius of curvature of a light ray in a stratified optical medium (i.e. one in which the refractive index n depends

only on one coordinate y). An axial plane through a fibre is nothing but a two-dimensional stratified medium in

which the refractive index depends on the radial coordinate. In the following problems, we develop the exact

expression for the curvature of meridional rays.

We let the y, z plane lie in the axial plane of interest, with the z axis the fibre’s axis and the y axis along the

radial direction (but, unlike a radius, y can go negative). The refractive index has the form n ¼ n(y).

(a) In classical mechanics, a one-dimensional system moving along the trajectory q ¼ qðtÞ can be described by a

Lagrangian function L ¼ Lðq; q0; tÞ where q0 ¼ dq=dt. Requiring that the least action S ¼
R
Lðq; q0; tÞdt be

unchanged to first order in small virtual variations of qðtÞ, while holding the endpoints ðq1; t1Þ and ðq2; t2Þ
fixed, leads to the Euler–Lagrange equation d=dtð@L=@q0Þ � @L=@q ¼ 0.

We can describe a ray in the y, z plane by z ¼ zðyÞ, provided we limit ourselves to a segment of the path

where y changes monotonically. Following Fermat’s principle, express the optical path between two fixed

endpoints ðct, where t is the travel time) in the form of an action-like integral, ct ¼
R y2
y1
Lðz; z0; yÞdy, where

z0 ¼ dz=dy: Integrate the Euler–Lagrange equation to prove that along the ray

n cos y ¼ constant ð6:55Þ

where y is the angle the ray makes with the z axis.

(b) Suppose you modelled a planar slab as a series of thin layers parallel to the x, z plane, in each of which nðyÞ
is a constant. Explain how you would arrive at the relation (6.55) above by a simple argument.

(c) Suppose that a ray passes y ¼ 0 at a positive angle y0, and moves toward positive y. If nðyÞ decreases

continuously as y increases, show that the ray will tip over to smaller angles. What condition must the

refractive index satisfy in order that the ray will reach a turning point at some y ¼ yt, where it will move

parallel to the z axis, and then curve back to y ¼ 0 again?

(d) Prove that, regardless what form nðyÞ has, no ray can describe an arc of a circle equal to or exceeding a

semicircle.

Problem 6.4

(a) As in the previous problem, consider a fibre where y, z is an axial plane, the z axis is the fibre’s axis, and the

refractive index varies in the radial direction as n ¼ nðyÞ. By using the result (6.55), find a differential

formula for curvature of a meridional ray in that plane. The curvature of the ray is defined by 1=R, where R is

the instantaneous radius of the arc. Show that the curvature is equal to dy=ds, where s is the element of the

arc length and y the ray’s angle from the z axis. Derive an exact result for 1=R in terms of y; n and dnðyÞ=dy.

(b) Use the preceding to determine the curvatures for the cases of y ¼ 0, and y ¼ �p=2 (assuming dn=dy is

finite everywhere). Explain why the result for y ¼ 0 is surprising if we consider only the motion of a

single ray.

Problem 6.5
Suppose every meridional ray in a GRIN fibre follows a sinusoidal path of wavelength �. Given n1; rt; and �,
defined as in Problem 6.2, find (a) the refractive index profile nðrÞ and (b) the ray’s axis-crossing angle y1.
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7 Polarization of Light

I will found my enjoyments on the affections of the heart, the visions of the imagination, and the spectacle of

nature.

Etienne Louis Malus, born Paris, 23 July 1775, the discoverer of the polarization of light.

Michael Faraday. . .‘magnetised a ray of light’.

Linearly polarized light is a surprisingly common phenomenon in everyday circumstances. It can be

detected by the use of the ‘polaroid’ material in glasses used, especially by motorists, to reduce glare

in bright sunlight. Polaroid transmits light which is plane polarized in one direction only, and absorbs

light polarized perpendicular to this direction. Light reflected from any smooth surface, such as a

wet road or a polished table top, is partially linearly polarized; this is easily demonstrated by rotating

the polaroid glass, which gives a change in brightness according to the change in angle between

the plane of polarization and the transmission axis of the polaroid. Complete polarization is found

for reflection at a particular angle of incidence, the ‘Brewster angle’ (Section 5.3). The light of the

blue sky, which is sunlight scattered through an angle, is also noticeably polarized. Insects such as

honey bees can detect the polarization of the sky, and use its direction in relation to the Sun for

navigation.

Circular polarization is less easily observed, but it is important in several phenomena concerned

with the propagation of electromagnetic waves in anisotropic media, e.g. in the propagation of light in

crystals such as quartz, and in some liquids such as sugar solution.

In this chapter we show how any state of polarization in a wave can be expressed in terms of

elementary components, either plane or circularly polarized, and how the state of polarization may be

changed by transmission through optically active materials.

7.1 Polarization of Transverse Waves

In the previous chapter we showed that light is a transverse electromagnetic wave. The polarization of

the wave is the description of the behaviour of the vector E in the plane x,y, perpendicular to the

direction of propagation z.

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
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The plane of polarization is defined as the plane containing the propagation vector, i.e. the z axis,

and the electric field vector.1 The plane of polarization need not be constant at any point on the ray,

but if the vector E does remain in a fixed direction, the wave is said to be linearly or plane polarized.

If the direction of E changes randomly with time, the wave is said to be randomly polarized, or

unpolarized. The vector E can also rotate uniformly in the plane x; y at the wave frequency, as

observed at a fixed point on the ray; the polarization is then circular, either right- or left-handed

depending on the direction of rotation. A combination of plane and circularly polarizations produces

elliptical polarization. A partially polarized light wave can have a combination of polarized and

unpolarized components.

It is convenient to consider a polarized wave as the sum of components Ex and Ey on the orthogonal

axes x and y; these are two independent plane polarized waves with individual amplitudes and phases.

The vector addition of these two components can produce any state of polarization of the actual electric

field, depending on the relative phase of the two oscillations. If the two oscillations are in phase, the

successive vector sums are as in Figure 7.1(a). The resultant is a vector at a constant angle to the x axis.

Two plane polarized waves have combined to produce another wave which is also plane polarized.

If the two oscillations are in quadrature, so that their values of f in equations of the form

E ¼ a cosðot � kzþ fÞ differ by p=2, the successive vector additions follow Figure 7.1(b). Here a is

the amplitude on the x axis, and b the amplitude on the y axis. The resultant now rotates in the plane

x; y, following a circle if the two amplitudes a; b are the same, or an ellipse if a 6¼ b. If the x

oscillation is phase advanced on the y oscillation the rotation is anticlockwise; if it is retarded the

rotation is clockwise. The two plane polarized waves have combined to produce a wave which is

elliptically polarized.

We now show how any state of polarization in a ray of light can be described in terms of

elementary components of plane polarized light. It is necessary to distinguish first between the

polarized and unpolarized components of the ray. Note that when we consider states of polarization

we are adding field components such as Ex and Ey, while for unpolarized light these components have

a randomly changing phase relation and only the mean square of the amplitude is significant; it is the

mean square of the amplitude which is proportional to the irradiance of the ray.

1It is to be emphasized that it is the plane of vibration of the vector E which is taken to define the plane of

polarization; there is ambiguity and confusion over this in some of the older literature.

Figure 7.1 Vector addition of two oscillating electric fields, at successive moments through one half-cycle. The
two fields have unequal amplitudes and are mutually perpendicular: in (a) they are in phase and in (b) they are in
quadrature. The resultant oscillation is linearly polarized in (a) and elliptically polarized in (b)
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We now analyze the polarized component of a wave propagating along the z axis in terms of linear

components2 with any phase difference f:

Ex ¼ a cosðot � kzÞ
Ey ¼ b cosðot � kzþ fÞ:

ð7:1Þ

If f ¼ 0; Ex and Ey combine vectorially to give a resultant field E with magnitude ða2 þ b2Þ1=2
, and

at an angle c0 to the x axis given by

tanc0 ¼ b

a
: ð7:2Þ

If f ¼ p=2 and a ¼ b, the wave is circularly polarized, and the vector E describes a uniform

clockwise circular motion in space; the handedness reverses when f ¼ �p=2 (see Problem 7.2).

In optics3 the hand is defined looking back towards the source of the ray, when the electric field vector

in any one plane rotates clockwise for a right-handed circular polarization. In this case, when the

thumb of the right hand points back towards the source, the fingers will curl in the clockwise

direction. Figure 7.2 shows that in a right circularly polarized wave, at a fixed moment in time the tip

of the vector E describes a right-handed screw in space.

More generally, adding orthogonal vector oscillations when f is not zero or p=2 produces an

elliptical polarization whose major axis does not lie along x or y. We add the real parts of the

oscillations, with components Ex and Ey:

Ex

a
¼ cosot;

Ey

b
¼ cosðot þ fÞ

¼ cosot cosf� sinot sinf:
ð7:3Þ

Source

t = constant

y

x

E

B

E

z

z = constant

Figure 7.2 A right circularly polarized wave moving in the z direction

2The reader should be careful not to confuse the two dimensional plot of ðEx;EyÞ with a phasor plot. In

particular, a complex representation of ðEx;EyÞ would require two separate phasors, one each for Ex and Ey.
3Unfortunately, this is the opposite of the convention for radio waves, where the handedness is defined looking

along the direction of propagation.
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Eliminating the time factor,

Ey

b
¼ Ex

a
cosf� 1 � Ex

a

� �2
" #1=2

sinf; ð7:4Þ

E2
y

b2
þ E2

x

a2
� 2ExEy

ab
cosf� sin2 f ¼ 0: ð7:5Þ

This equation describes an ellipse, as in Figure 7.3. At any time the resultant field vector E reaches to

a point on the ellipse, moving round as time progresses. The ellipse is contained in a rectangle with

sides 2a and 2b. The position of the major axis of the ellipse, at an angle c to the x axis, is found as

follows.

The amplitude E2
x þ E2

y is maximum on the major axis. Therefore at this point

Ex dEx þ Ey dEy ¼ 0: ð7:6Þ

Also from equation (7.5), for a fixed value of f:

Ex

a2
� cosf

ab
Ey

� �
dEx þ

Ey

b2
� cosf

ab
Ex

� �
dEy ¼ 0: ð7:7Þ

On the major axis we have tanc ¼ Ey=Ex, so that combining equations (7.6) and (7.7)

1

a2
� cosf

ab
tanc ¼ 1

b2
� cosf

ab
cotc: ð7:8Þ

Since tanc� cotc ¼ �2 cot 2c, we find:

tan 2c ¼ 2ab cosf
a2 � b2

: ð7:9Þ

The ratio of the maximum and minimum axes of the ellipse may be found by rotating the

coordinate axes through the angle c. The axial ratio may in this way be shown to be given by R in

R

1 þ R2
¼ ab

a2 þ b2
j sinf j : ð7:10Þ

+a

+b

–a

–b

x

y

y

Figure 7.3 Elliptically polarized oscillation, combining linearly polarized oscillations on the x and y axes, with
amplitudes a and b, and with an arbitrary phase difference
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7.2 Analysis of Elliptically Polarized Waves

By a suitable choice of amplitudes, a; b, and relative phase f, the vibration ellipse of Figure 7.3 may

be set with any axial ratio and with the major axis at any position angle. It follows that any elliptical

oscillation or elliptically polarized wave may be analyzed mathematically into two linearly polarized

components at right angles, using axes at any angle to the major axis of the ellipse. The relative

phase depends on this position angle; it is only important to note that the two components are in

quadrature if they are aligned with the major and minor axes of the ellipse. The analysis may be done

experimentally by using a device which will change the relative phases of two orthogonal components

of a ray by a known amount. A particularly useful device is the quarter-wave plate, a transparent slice

of anisotropic crystalline material in which the wave velocity differs between two perpendicular

directions by such an amount that one component takes a quarter period longer to propagate than the

other (see Section 7.8). This, in combination with a polaroid analyzer, can be used for analysis of

elliptically polarized light by turning the axes of the quarter-wave plate until a position is found

where the emergent light is fully plane polarized.

A combination of an analyzer and a quarter-wave plate can also be used to determine the state of

polarization of an arbitrarily polarized wave. For this purpose it is convenient to think of the most

general state of polarization as a combination of elliptical and random polarization. The procedure is

as follows:

1. Using the analyzer discussed above, the amount of plane polarized light can be determined by

rotating this analyzer. The remaining light when the analyzer is set to admit a minimum irradiance

may be circularly or randomly polarized.

2. The quarter-wave plate is inserted before the analyzer, and the orientations of both are changed

independently to produce a minimum irradiance. Elliptically polarized light will give zero

irradiance in these circumstances, since the quarter-wave plate when properly oriented will turn

it into plane polarized light which will be rejected by the analyzer. Any remaining light at

minimum irradiance must have a random polarization.

This procedure is used in the ellipsometer, an instrument designed to measure certain characteristics

of a surface by observing its polarizing effect on reflected light. This has a particular importance in

measuring the thickness and composition of thin deposited films, in which the polarizing effect is

wavelength dependent (see the discussion on thin films in Chapter 8).

7.3 Polarizers

Light from most sources is unpolarized. It can be converted into fully polarized light by the removal

of one component, usually either plane or circularly polarized.

A simple example is the wire grid polarizer used originally for radio waves, but which can be

demonstrated to work for infrared light at about 1mm wavelength. This is simply a parallel grid of

thin conducting wires whose diameter and spacing are small compared with the wavelength. In such a

grid only the electric field component perpendicular to the wires can exist; for the component

polarized parallel to the wires the grid acts as a reflecting plane. Only the plane of polarization

perpendicular to the grid is transmitted (Figure 7.4). Such devices are called polarizers when they are

used to create polarized light, or analyzers when they are used to explore the state of polarization, as
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in the previous section. The action of a linear analyzer on a linearly polarized wave is shown in

Figure 7.5. Light from a linear polarizer with transmission axis A1 is incident normally on a linear

analyzer with axis A2 at angle y to the plane of polarization defined by A1. The amplitude of the

transmitted wave is reduced by the factor cos y, giving Malus’s law for the irradiance I

IðyÞ ¼ I0 cos2 y: ð7:11Þ

The metallic wire grid has an analogue in the aligned molecular structure of a polaroid sheet. This is a

stretched film of polyvinyl alcohol containing iodine; the iodine is in aligned polymeric strings which

absorb light polarized parallel to the direction of alignment. A general class of crystals, including the

well-known material tourmaline, have the same property of selectively absorbing one plane of

polarization. These materials are often referred to as dichroics.4

4The term dichroic originated in mineralogy, where it referred to the different colours of two polarized rays

emerging from birefringent crystals. The colours arise from selective absorption; if the absorption over a large

wavelength range is much larger in one polarization than the other, the material is dichroic in the sense used in

optics.

Figure 7.4 A wire grid polarizer. The wires are spaced at less than a wavelength apart; light polarized parallel to
the wires is reflected. The grid’s transmission axis A is normal to its wires

Figure 7.5 Malus’s law. Light from a polarizer with transmission axis vertical falls on a linear analyzer with axis
at angle y. The irradiance is reduced by cos2 y

168 Chapter 7: Polarization of Light



Light can also be made linearly polarized by reflection at the Brewster angle from a dielectric

surface (Chapter 5). The reflection coefficient is, however, often inconveniently low; this can be

overcome by the pile-of-plates polarizer shown in Figure 7.6(a), where reflections from multiple

layers of glass or other dielectric add to give almost complete reflection. The high transmission

coefficient for the other polarization at the Brewster angle is used to make perfect non-reflecting

windows, as shown in Figure 7.6(b). Such Brewster windows are used in gas lasers (Chapter 15),

where light from the laser cavity makes repeated passes through windows placed in front of mirrors at

either end of the cavity. The emerging laser light is usually fully linearly polarized in a plane

determined by the Brewster windows.

7.4 Liquid Crystal Displays

The familiar digital displays of pocket calculators and wrist watches employ a form of electro-optic

modulator shown in Figure 7.7. The active element is a liquid crystal, in which long organic

molecules align naturally parallel to a liquid–glass interface, but can be realigned by an electric field.

The natural alignment is determined by conditions at the surface, so that a twisted structure can be

produced in a thin cell, as in Figure 7.7(a). The effect is now to rotate the plane of polarization, as in

the optical activity of a quartz crystal (Section 7.9), and in the arrangement of an LCD the reflected

light from a mirror behind the cell is rejected by a polarizer. Application of an electric field rearranges

the molecules as in Figure 7.7(b), removing the spiral structure and allowing light to pass both ways

through the cell.

An illustration of the use of the liquid crystal cell as a reflective display device is shown in

Figure 7.8. The cell LC is placed between two polarizers, which are aligned to correspond to the

directions of the molecular ordering on the two surfaces, and in front of a mirror. Incident light

polarized by the first polarizer has its polarization direction rotated by the cell, passes through the

second polarizer, is reflected by the mirror and again passes through both polarizers. With no electric

field on the cell the image therefore appears bright. When a field is applied the direction of

polarization of light is not rotated, light cannot travel in either direction through the cell and the

image appears dark.

Figure 7.6 Reflection and transmission at the Brewster angle yp: (a) reflection at a pile of plates;
(b) transmission at a Brewster window

7.4 Liquid Crystal Displays 169



7.5 Birefringence in Anisotropic Media

In an anisotropic medium, and in particular many transparent crystals, the phase velocity of light

varies with crystal orientation. The refractive index is then not a single number, but a quantity which

varies with direction; it may be represented by a surface such as an ellipsoid. A further complication

is that the refractive index in any one direction may be a function of the state of polarization of the

light wave, so that a ray entering a crystal with random polarization will be split into two components

which will be refracted differently. The medium is then said to be doubly refracting or birefringent.

The effect (Figure 7.9) in calcite (Iceland Spar) was described by Newton: ‘If a piece of this

crystalline Stone be laid upon a Book, every Letter of the Book seen through it will appear double, by

means of a double refraction’ (Opticks, Book 3). Newton also recognized that the two rays differed in

some intrinsic geometric property. He said they had ‘sides’; we now say they are plane polarized.

The refractive index of a crystal depends generally on the direction of polarization in relation to the

crystal structure. Not all crystals behave in this way; those with a highly symmetric form, such as

sodium chloride, are not birefringent. Birefringence is also observed as a difference between the

propagation of two hands of circular polarization, as in quartz crystals and in solutions of some

optically active substances such as sugar (Section 7.9 below).

The crystal structure of calcite (CaCO3) has a single axis of symmetry, which coincides with an

optic axis; this is also an axis of symmetry for the refractive index surface. (Calcite is a uniaxial

crystal; other crystals have more complex symmetries and their birefringence is correspondingly

(a) (b)

Figure 7.7 Molecular alignment in an LCD. The cell is typically about 5mm thick: (a) with no field between the

electrodes, the molecules align with the surface structures, which are arranged to give a twisted molecular

structure; (b) an electric field aligns the molecules and removes the twist

Unpolarized

light

Polarizer Polarizer MirrorLiquid crystal cell

Figure 7.8 An element of an LCD using reflected light
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more complex.) A point source of unpolarized light within a calcite crystal will generate two

wavefronts, as shown in Figure 7.10. One is spherical, and is known as the ordinary wave, or o-wave;

the other forms an oval,5 and is known as the extraordinary wave, or e-wave. (Note that these are

wavefronts; distances from the central point source are proportional to the phase velocity, v ¼ c=n,

and thus vary inversely with the refractive index, n. The refractive index surface for the

extraordinary ray is a prolate, not oblate, ellipsoid. The difference in refractive indices ne � no is

negative for calcite, which is classified as negative uniaxial.) It is their different (orthogonal)

polarizations relative to the crystal structure that distinguish the two waves, causing them to interact

differently with the molecules and thus to propagate at different velocities. In the o-wave the electric

vector is everywhere normal to the optic axis, and in the e-wave it has a component parallel to the

optic axis.

Figure 7.9 Double refraction in Iceland Spar. (�Andrew Alden, geology.about.com., reproduced with
permission of the author)

Optic

e-wave

o-wave

 axis

Figure 7.10 Birefringence in a uniaxial crystal: ordinary and extraordinary wavefronts radiating from a point
source in the crystal. The electric field of the e-wave is shown by the double-headed arrows; the polarization of
the o-wave is out of the plane of the diagram. For propagation perpendicular to the optic axis the refractive
index depends on the orientation of the vector E in relation to the axis; both waves travel at the same velocity
along the axis
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Refractive indices of several crystalline substances are shown in Table 7.1.

7.6 Birefringent Polarizers

An unpolarized ray incident on a face of a calcite crystal will in general be refracted into two

rays, propagating in different directions within the crystal, and with orthogonal plane polariza-

tions. This separation is used in various forms of birefringent polarizer. In the Nicol prism,

made of calcite (Figure 7.11), the two rays are separated at a layer of transparent cement within

the calcite, arranged so that one of these rays is removed by total internal reflection. The single

emergent ray is accurately linearly polarized. Figure 7.11 also shows the more commonly used

Glan–Foucault prism in which there is no deviation at the first face, and the transmitted ray is

undeviated overall. The space between the two prisms is usually filled with air (the Glan–air

polarizer); polarization selection then requires simply that the prism angle y is related to the two

refractive indices no and ne by

1

no

< sin y <
1

ne

ð7:12Þ

so that the ordinary ray alone will be removed by total internal reflection. An increased field of view

is obtained by cementing the prisms together (the Glan–Thompson polarizer), but the air-spaced

version can handle larger irradiances, as is often required in high-powered laser systems.

In the Wollaston prism (Figure 7.12) the optic axes of the two components are orthogonal, as

shown. The two polarized rays are both transmitted, but they are separated by a sufficient angle for

them to be treated individually; for example, they may go to separate photoelectric detectors. Such

devices are used in optical telescopes for measuring the plane polarized component of starlight. The

advantage over the Nicol and Glan–Foucault prisms is symmetry: both components are transmitted

through similar paths in the crystal, and any absorption is the same for both.

Table 7.1 Indices of refraction at l0¼ 589.3 nm

Substance no ne

Isotropic

rock salt (NaCl) 1.544

sylvite (KCl) 1.4900

fluorite/fluorspar (CaF2) 1.434

Uniaxial

calcite/calcspar (CaCO3) 1.658 1.486

quartz (SiO2) 1.544 1.553

rutile (TiO2) 2.613 2.909

5This wavefront surface resembles an ellipsoid, but is actually a fourth-degree oval. However, the correspond-

ing wave vector (k) surface is an ellipsoid.
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7.7 Generalizing Snell’s Law for Anisotropic Materials

Cnsider a monochromatic, plane wave incident on the flat face of a transparent crystal. Boundary

conditions for the incident, reflected and transmitted waves require that exp½iðk � r� otÞ� is the same

for all three waves. (We assume that the origin of coordinates is located in the interface.) But since the

frequency is the same for all three waves, this implies that

ki � r ¼ kr � r ¼ kt � r; ð7:13Þ

(b)

Optic axis

(a)

e

q

q

e

o

o

Figure 7.11 (a) Nicol and (b) Glan–Foucault prisms. Selective reflection in the Nicol prism is obtained by using
a transparent cement between the parts of the calcite crystal with refractive index 1.52, intermediate to the
index for the e-ray (1.49) and the index of the o-ray (1.66). In the Glan–Foucault polarizer the two prisms are
spaced by an air gap. The calcite prisms require an angle y ¼ 38��42�

Optic
axis

Optic
axis

o

e

Figure 7.12 Wollaston prism. The two parts are made of a birefringent material such as quartz (a positive
uniaxial substance, with ne � no > 0), with the optic axis in the two directions orthogonal to the incident ray.
The e- and o-rays are separated at the interface. In quartz the refractive indices for rays normal to the optic axis
are no ¼ 1:544 and ne ¼ 1:553 (refractive indices vary with wavelength: these values are for the Fraunhofer
sodium D-line at 589 nm; see Table 2.1). Calcite is also used; it has a larger difference in refractive indices, and
separates the rays by a larger angle
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where r is any displacement within the surface. Since the three wave vectors have the same vector

component along the surface, we deduce that the reflected and transmitted rays lie in the plane of

incidence, which is defined by ki and the surface normal. Suppose the refractive index changes from

n1 to n2 (possibly anisotropic). If each k makes an angle y to the normal, then since k ¼ on=c,

equation (7.13) reduces to

n1 sin yi ¼ n1 sin yr ¼ n2 sin yt: ð7:14Þ

The first two terms give yr ¼ yi, the law of reflection. The final term provides a generalization of

Snell’s law valid for anisotropic materials.

Consider light entering a uniaxial crystal. The last member of equation (7.14) can refer equally

well to the o- or the e-wave. For the latter case, n2 becomes a variable function of direction, and

solving equation (7.14) for the transmitted angle is often non-trivial.

Example. Consider a uniaxial crystal cut parallel to its optic axis. Light is incident on the crystal at

an angle yð¼ yiÞ in the plane containing the optic axis. We shall find the angle fð¼ ytÞ at which the e-

wave is transmitted. For definiteness, let the z axis be normal to the surface, and the y axis lie along

the optic axis. Note that in the plane of incidence, the e-wave has a variable value nf of its refractive

index and this lies along an ellipse. This has the equation

ðny=noÞ2 þ ðnz=neÞ2 ¼ ðnf sinf=noÞ2 þ ðnf cosf=neÞ2 ¼ 1; ð7:15Þ

where ny; nz are the Cartesian coordinates of the ellipse, and no refers to the ordinary ray (not to

vacuum). Show that

tanf ¼ no

ne

sin yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

o � sin2 y
q : ð7:16Þ

Solution. Equation (7.14) tells us that sin y ¼ nf sinf. Solving equation (7.15) for sinf, we get

sin2 y ¼ n2
f sin2 f ¼ sin2 f

ðsin2 f=n2
o þ cos2 f=n2

eÞ
¼ n2

o tan2 f
ðtan2 fþ n2

o=n
2
eÞ
: ð7:17Þ

Solving this for tanf yields equation (7.16).

7.8 Quarter- and Half-Wave Plates

The polarization state of light can also be analyzed using components sensitive to circular and other

states of polarization; many of these components depend on phase changes during propagation in

anisotropic media rather than on selective refraction or absorption.

174 Chapter 7: Polarization of Light



Consider the propagation of plane polarized light incident normally on a parallel-sided thin slab

of crystal such as calcite, cut so that the optic axis is in the plane of the slab (Figure 7.13). The

component of the wave with electric vector parallel to the optic axis travels faster than the

perpendicular component (assuming ne < no), thereby defining fast and slow axes in the slab;

these are the e- and o-waves (for extraordinary and ordinary) introduced in the previous section.

These two components are in phase as they enter the slab, but the e-wave travels faster and a

phase difference d grows as they travel. If the two refractive indices are ne and no, the phase

difference after a distance d is

d ¼ 2p
l0

ðne � noÞd radians; ð7:18Þ

where l0 denotes the vacuum wavelength.

Crystal slabs giving jdj ¼ p=2 and p are known as retarders, either quarter-wave or half-wave

plates, respectively. We have already shown in Section 7.2 how a quarter-wave plate can be used in

the analysis of polarized light. These components have important uses in manipulating polarization in

optical systems.

The amplitudes of the two components are A cos y and A sin y, where y is the angle between

the incident plane of polarization and the optic axis and A is the amplitude in the incident

ray. Combining these two again with phase difference d produces a different state of polariza-

tion (Figure 7.14); for d ¼ p=2 this is an ellipse with a principal axis along the optic axis, while

for d ¼ p the polarization is again plane but rotated by angle 2y. In the particular case where

y ¼ 45� the ellipse becomes a circle, and circularly polarized light is produced; the opposite

hand of circular polarization is obtained when y ¼ 135�. For d ¼ p and y ¼ 45�, the plane

of polarization is rotated by 90�. The successive changes in polarization are shown in Figure 7.15.

7.9 Optical Activity

In many anisotropic media the refractive index is different for the two hands of circular

polarization. This form of birefringence, known as chirality, has an important effect on plane

polarized light: a beam of linearly polarized light passing through such an optically active medium

Quarter
wave

Quarter
wave

Half
wave

FF

Figure 7.13 A plane polarized wave at 45� passes through a quarter-wave plate and becomes circular; the hand
is reversed by a half-wave plate; and the orthogonal plane is produced by a second quarter-wave plate. The fast
axis is indicated by F
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emerges with its plane of polarization rotated through an angle proportional to the path length in the

medium. The same effect occurs in the propagation of linearly polarized radio waves through the

ionized hydrogen of interstellar space, where the birefringence is due to the interstellar magnetic

field (see Chapter 19).

The common characteristic of these particular media is that light of different hands of circular

polarization travels with different velocities, so that if the two hands are propagated together, their

phase relation changes progressively along the line of sight. The addition of two circularly polarized

oscillations or waves, of equal amplitudes but with opposite hands, results in a plane polarized wave

whose plane depends on the relative phase of the two circular oscillations. The difference in

propagation velocity therefore results in a rotation of the plane of polarization, as observed for

example in the propagation of plane polarized light in sugar solution.

The double refraction, or birefringence, of a crystal depends on anisotropy in its structure. In some

crystals, notably crystalline quartz (but not fused quartz), and in the molecules of many organic

substances such as sugar, the molecular structure is a helix. The refractive index for circularly

polarized light then depends on the relation between the hand of polarization and the hand of the

spiral structure. The phenomenon is useful both in the manipulation of polarization and in elucidating

the molecular structure of so-called optically active materials.

A plane polarized ray traversing an optically active crystal must then be thought of as the

combination of two circularly polarized rays, which travel at different speeds. Their relative phases,

which determine the position angle of the linear polarization, change along the ray path, and the plane

rotates.

The rate of rotation of the plane of polarization in quartz, for light propagated along the optic axis,

is 21� per millimetre. In liquids the rotation is normally less, but for the so-called liquid crystals,

which are liquids in which molecules are partially oriented as in a crystal lattice, the rotation may be

Quarter-wave
plate

Half-wave
plate

A cos q

A sin q

Figure 7.14 A plane polarized wave at angle y to the fast direction of a quarter-wave and a half-wave plate,
converted into an elliptical and a plane polarized wave respectively

Figure 7.15 Changes of polarization through a series of quarter-wave plates
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very much larger. Cholesteric liquid crystals, in which the molecules have a helical structure, have

rotations up to 40 000� per mm. These are used in LCDs (Section 7.4).

7.10 Formal Descriptions of Polarization

The analysis of fully polarized light in terms of orthogonal components, either linear or circular, lends

itself to a simple mathematical formulation in terms of Jones vectors. In this analysis, the orthogonal

linear components of the electric field which determine the state of polarization are written in column

form

E0x

E0y

� �
¼ A expðifxÞ

B expðifyÞ

� �

where the non-negative numbers A;B are the magnitudes of the complex amplitudes E0x;E0y and

fx;fy are their phases.6

The Jones vector is a simplified and normalized form of this. For example, for A ¼ B and fx ¼ fy,

corresponding to a linear polarization at 45�, it is written

1

1

� �
:

A phase difference appears as an exponential; for example, a circular polarization in which the

y component leads in time by 90� is written

1

expð�ip=2Þ

� �

or simply

1

�i

� �
:

The Jones vector of the sum of two coherent light beams is the sum of their individual Jones

vectors.

The advantage of this formulation is that devices such as polarizers and wave plates can be

specified by simple 2 � 2 matrices, the Jones matrices, and their operation on a polarized wave is

found by matrix multiplication. For example, the product

a11 a12

a21 a22

� �
E0x

E0y

� �

gives the modified field components

E0
0x ¼ a11E0x þ a12E0y

E0
0y ¼ a21E0x þ a22E0y:

ð7:19Þ

6The variable part of the phasors that we have factored out is assumed to have the form exp½iðkz� otÞ�.
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In equations (7.19), the unprimed and primed components represent the components of the

complex electric field, respectively, before and after passing through a given device. The reader

must understand that, in contrast to orthogonal rotation of axes, the x and y axes are invariant; they

do not change from ‘‘before’’ to ‘‘after’’.

As an illustration, consider a polarizer with a transmission axis in the x,y plane with an arbitrary

direction given by the unit vector p̂. If a plane wave with electric field amplitude E0 is incident

normally on this, the electric field vector along the transmission axis is ðE0 � p̂Þp̂. The projections of

this onto the x and y axes yield the components E0
0x and E0

0y, which can be expanded in terms of the

original electric field:

E0
0x ¼ ðE0 � p̂Þp̂ � x̂ ¼ ðE0xx̂ � p̂þ E0yŷ � p̂Þp̂ � x̂

E0
0y ¼ ðE0 � p̂Þp̂ � ŷ ¼ ðE0xx̂ � p̂þ E0yŷ � p̂Þp̂ � ŷ:

ð7:20Þ

The polarizer’s Jones matrix can be read off as

ðp̂ � x̂Þ2
p̂ � x̂p̂ � ŷ

p̂ � ŷp̂ � x̂ ðp̂ � ŷÞ2

� �
:

For example, if the transmission axis is rotated by 45� from the x axis, p̂ ¼ ð1=
ffiffiffi
2

p
Þðx̂þ ŷÞ, the

Jones matrix is

1
2

1 1

1 1

� �
:

The action of a series of components can be found from matrix multiplication, giving a single 2 � 2

matrix to represent the whole system. Matrices representing some of the polarizers and retarders dealt

with in this chapter are tabulated below.

Jones matrices

Linear polarizers:

horizontal
1 0

0 0

� �
vertical

0 0

0 1

� �
45� 1

2

1 1

1 1

� �
:

Circular polarizer:

right-hand 1
2

1 i

�i 1

� �
left-hand 1

2

1 �i

i 1

� �
:

Polarization plane rotator:

rotation angle b
cos b � sinb
sinb cos b

� �
:

Phase retarders: F is the fast axis of a quarter-wave plate (QWP),

QWP; F vertical expðip=4Þ
1 0

0 �i

� �

QWP; F horizontal expðip=4Þ
1 0

0 i

� �
:
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Example. Use the Jones method to find the result when a horizontal linear polarizer acts on: (a) a

wave polarized in the x,y plane at angle b to the x axis; and (b) circularly polarized waves of either

hand. In each case, compare the initial and final irradiance, proportional to jE0xj2 þ jE0yj2.

Solution. (a) Horizontal linear polarizer acts on rotated linearly polarized wave:

1 0

0 0

� �
cos b
sin b

� �
¼ cos b

0

� �
:

The result is a wave polarized along the x axis, but with irradiance reduced by a factor of cos2 b.

(b) Horizontal linear polarizer acts on circularly polarized wave:

1 0

0 0

� �
1

�i

� �
¼ 1

0

� �
:

The final wave is linearly polarized along the x-axis, but with half the original irradiance of the

incident wave.

The Jones vectors apply only to fully polarized light. For partial polarization the appropriate

analysis uses the Stokes parameters, which are functions of irradiance rather than fields. If the

irradiance is measured through four different analyzers, (i) passing all states (but transmitting only

half of each), (ii) and (iii) linear analyzers with axes at angles 0� and 45�, (iv) a circular analyzer,

which measure respectively I0; I1; I2; I3, the Stokes parameters are

S0 ¼ 2I0

S1 ¼ 2I1 � 2I0

S2 ¼ 2I2 � 2I0

S3 ¼ 2I3 � 2I0:

ð7:21Þ

For partially polarized light with polarized and unpolarized components of irradiance Ip and Iu we

define the degree of polarization P as

P ¼ Ip

Iu þ Ip
¼ ðS2

1 þ S2
2 þ S2

3Þ
S0

1=2

: ð7:22Þ

The Stokes parameters for two incoherent light beams are the sum of their individual Stokes

parameters.

Example. What are the polarization states of the two independent (incoherent) light beams with

Stokes parameters (1;�1; 0; 0) and (3; 0; 0;�2), and of their sum?

Solution. The first is fully linearly polarized (vertically, i.e. at 90�, P ¼ 1); the second is partially

left-hand circularly polarized (P ¼ 0:67) and their sum (4;�1; 0;�2) is partially elliptically polarized

(long axis vertical) with P ¼
ffiffiffi
5

p
=4 ¼ 0:56.

Consider, for example, a wave of the form given by equation (7.1). Allowing the amplitudes a; b
and phase f to be slowly varying with time (relative to the wave period 2p=o), the wave becomes
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quasi-monochromatic, and can be polarized or unpolarized, depending on the time dependencies. The

Stokes parameters (apart from a multiplicative constant) reduce to

S0 ¼ ha2i þ hb2i
S1 ¼ ha2i � hb2i
S2 ¼ h2ab cosfi
S3 ¼ h2ab sinfi:

ð7:23Þ

The brackets stand for time averages over an observation period of many cycles.

Example. Evaluate P of equation (7.22), and confirm it has the values expected for:

(a) a fully polarized wave, where the amplitudes and phase are constant;

(b) a completely unpolarized wave, where the phase varies randomly and hE2
xi ¼ hE2

yi.

Solution. (a) With no need for the time averages, one finds that

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ¼ ða2 þ b2Þ2;

hence P ¼ 1.

(b) ha2i ¼ hb2i and the random change of phase leads to S1 ¼ S2 ¼ S3 ¼ 0, so that P ¼ 0.

7.11 Induced Birefringence

Some isotropic materials can be made birefringent by an external electric or magnetic field. The

effects can be understood at the atomic or molecular level, as in the permanently birefringent

materials.

In the Kerr effect, discovered in 1875 by J. Kerr, the birefringence is induced in many solids,

liquids and gases by an electric field transverse to the light ray. As in a uniaxial crystal, quarter-wave

and half-wave plates can be created, although a cell several centimetres long may be needed in

practice. The difference in refractive indices is related to the field E and the vacuum wavelength l0 by

ne � no ¼ l0KE
2 ð7:24Þ

where K is the Kerr constant for the substance. The Kerr cell is used to modulate a ray of plane

polarized light. A cell about 10 cm long containing nitrobenzene (which has a large value of the Kerr

constant) becomes a half-wave plate when a transverse field of around 10 kV cm�1 is applied. If the

incident polarization is at 45� to the field, the emergent beam is rotated by 90� and it can be

transmitted by an analyzer set at 90� to the original plane, as in Figure 7.16(a). The Kerr cell can

therefore be used as an electrically operated light switch.

The Pockels effect is a birefringence induced in a crystal by a longitudinal electric field. The classes

of crystal which show this effect are also piezoelectric. Among the many exotic crystals developed

specially for a large Pockels effect are barium titanate and potassium dideuterium phosphate (known

as KD*P). A Pockels cell, as shown in Figure 7.16(b), acts in a similar way to the Kerr cell; it is,
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however, more compact and is widely used for electrical modulation and switching of light beams in

communications systems.

The Faraday effect (Figure 7.17) is induced optical activity, in which a longitudinal magnetic field

can induce a rotation of the plane of polarization in an isotropic material such as glass. The angle of

rotation c is proportional to the magnetic field strength B and the path length l, so that

c ¼ VBl ð7:25Þ

where V is the Verdet constant for the medium. In Table 7.2 values of V are quoted for a specific

wavelength; for most substances there is a large variation with wavelength.

A particularly simple explanation of the Faraday effect is available for propagation of a radio wave

through a cloud of free electrons (Section 19.5), such as in the ionosphere and in interstellar space,

where Faraday rotation is easily demonstrated. The refractive index depends on the amplitude of the

oscillation of the electrons in response to the electric field of the wave, which now includes a gyration

round the steady magnetic field (see Chapter 19). The amplitude of the oscillation depends on the

hand of the circular polarization as compared with the direction of natural gyration round the

magnetic field.

Example. A solenoid 10 cm long consists of a core of flint glass wound with 300 turns of wire and

carrying 2.0 amps. If the Verdet constant of the glass is 3:17 � 104 arcmin T�1 m�1, find the rotation

angle c this would induce in plane polarized light.

Modulating
voltage

Modulating
voltage

Polarizer

Polarizer

Polarizer
Light
beam

Light
beam

Plate electrodes

Polarizer

Transparent
electrodes

(a)

(b)

Figure 7.16 (a) A Kerr cell; (b) a Pockels cell. In each a light beam is modulated by an electric field which
induces birefringence, rotating the plane of polarization
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Solution. Inside a solenoid with current I ¼ 2:0 A and turns per unit length n ¼ 3000 m�1, the

magnetic induction is B ¼ m0nI ¼ ð4p� 10�7 T m A�1Þð3 � 103 m�1Þð2:0 AÞ ¼ 7:54 � 10�3 T.

Hence c ¼ VBl ¼ 3:17 � 104 arcmin T�1 m�1 � 7:54 � 10�3 T � 0:1 m ¼ 24 arcmin ¼ 0:40�.

A device which allows light to travel in one direction but not in the opposite direction, i.e. an

optical isolator, can be made by placing a Faraday rotating medium between polarizers P1 and P2

which are set at 45� to each other. The longitudinal magnetic field in the Faraday rotator is arranged to

give a rotation of 45�. Polarized light produced by the first polarizer P1 is rotated by 45� by the

Faraday cell and is transmitted by the second polarizer P2. Light travelling from the opposite direction

A

A′
Magnetic
field

Figure 7.17 The Faraday effect. Between the planes A, A0, a longitudinal magnetic field separates the refractive
index into different values for the two hands of circular polarization. The relative phases of the two circularly
polarized components of the plane polarized wave change, and the plane rotates

Table 7.2 Examples of the Verdet constant V for l0 ¼ 589:3 nm

Substance Temp. (�C) V (arcmin T�1 m�1Þ

Glass (light flint) 18 3:17 � 104

Phosphorus 33 13:3 � 104

Sodium chloride 16 3:59 � 104

Acetone 15 1:11 � 104

Carbon disulphide 20 4:23 � 104

Ethyl alcohol 25 1:11 � 104

Water 20 1:31 � 104
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through P2 receives a 45� rotation in the same direction, and is rejected by polarizer P1. These devices

find application in eliminating back reflections in optical fibre systems and in high-power laser

amplifiers.

Problem 7.1
Verify that equation (7.10) gives the correct value of R (ratio of maximum axis to minimum) for: (a) f ¼ 0, and

(b) f ¼ �p=2.

Problem 7.2
Consider Ex ¼ a cosðot � kzÞ; Ey ¼ a cosðot � kzþ fÞ for the two cases f ¼ �p=2, and verify that the upper

sign corresponds to right-circular polarization (clockwise rotation) and the lower to left-circular polarization

(anticlockwise rotation).

Problem 7.3
Verify that the Jones vectors

1

�i

� �

correspond, respectively, to right circularly polarized (upper sign) and left circularly polarized (lower sign)

light.

Problem 7.4
Use the Jones calculus to find out what kind of polarization results if (the matrix of) a ‘‘right-hand circular

(RHC) polarizer’’ acts upon: (a) waves polarized linearly along the x axis; (b) circularly polarized waves of

either hand.

In each case specify the change in irradiance I / jE0xj2 þ jE0yj2, if any.

Problem 7.5
Repeat Problem 7.4 for a ‘‘polarization-plane rotator’’.

Problem 7.6
Light is incident from air at angle y onto a uniaxial crystal face cut perpendicular to its optic axis. Find the angle

f at which the e-wave is transmitted.

Problem 7.7
(a) A Glan–air polarizer is cut at an angle y as shown in Figure 7.11. If light of wavelength 589.3 nm is incident, find

the allowed range of y when the prism is made of quartz. Which wave, o or e, is reflected out of the beam?

(b) Repeat the above for a prism made of calcite.

(c) What would happen to the two waves if either the quartz or calcite prism were cut at y ¼ 30� or y ¼ 45�?

Problem 7.8
A prism in the form of an equilateral triangle is made of calcite and has its optic axis parallel to the edge at its

apex. If unpolarized light of wavelength 589.3 nm is incident near the angle which produces minimum deviation,

what is the angular spread between the e- and o-waves when they emerge into the air?

Problem 7.9
Calculate the thickness of a calcite quarter-wave plate for sodium D light ðl0 ¼ 589 nmÞ, given the refractive

indices no ¼ 1:658 and ne ¼ 1:486 for the two linearly polarized modes.

Problem 7.10
A pair of crossed polarizers, with axes at angles y ¼ 0� and 90�, is placed in a beam of unpolarized light with

irradiance I0, so that light emerges from the first with I1 ¼ 1
2
I0 and from the second with I2 ¼ 0. A third polarizer

is placed between the two at angle y ¼ 45�. What then is I2?
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If the third polarizer rotates at angular frequency o show that

I2 ¼ I0

16
ð1 � cos 4otÞ: ð7:26Þ

Problem 7.11
A plane polarized wave propagates along the optic axis of quartz as two circularly polarized waves, so that the

difference in refractive indices nL � nR introduces a phase difference d between the two. Show that the plane of

polarization is rotated by angle d=2.

Calculate the thickness of quartz plate that will rotate the plane by 90� at wavelength 760 nm, given

jnL � nRj ¼ 6 � 10�5.

Problem 7.12
A printed page appears double if a doubly refracting crystalline plate is placed upon it. Why is it that a distant

scene does not appear double when viewed through the same plate?

Problem 7.13
Why does a thin plate of doubly refracting crystal generally appear faintly coloured when it is placed between

two polarizers?

Problem 7.14
Show that an elliptically polarized wave can be regarded as a combination of circularly and linearly polarized

waves.

Problem 7.15
An elliptically polarized beam of light is passed through a quarter-wave plate and then through a sheet of

polaroid. The quarter-wave plate is rotated to two positions where the polaroid shows the light to be plane

polarized, and it is found that the plane of polarization is then at angles of 24� and 80� to the vertical. Describe

the original elliptical polarization.
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8 Interference

. . . diversely coloured with all the Colours of the Rainbow; and with the microscope I could perceive, that these

Colours were arranged in rings that incompassed the white speck or flaw, and were round or irregular, according

to the shape of the spot which they terminated; and the position of Colours, in respect of one another, was the

very same as in the Rainbow.

Hooke, 1665, on interference colours in a flake of mica.

A man alike eminent in almost every department of human learning. . .[who] first established the undulatory

theory of light, and first penetrated the obscurity which had veiled for ages the hieroglyphics of Egypt.

Tablet in Westminster Abbey commemorating Thomas Young (1773–1829).

We have seen in Chapter 1, where the idea of Huygens’ secondary waves was introduced, that the

future position of a wavefront may be derived from a past position by considering every point of

the wavefront to be a source of secondary waves. If the wavefront effectively propagates along rays,

the geometric optics approach of Chapters 2 and 3 may be the most appropriate description of the

progress of a wavefront, taking no account of the physical nature of the wave, including its amplitude

and polarization. We now turn to the phenomena of interference and diffraction, where light is treated

as a periodic wave, and ray optics provides a totally inadequate description.

Interference effects occur when two or more wavefronts are superposed, giving a resultant wave

amplitude which depends on their relative phases.1

Diffraction is the spreading of waves from a wavefront limited in extent, occurring either when part

of the wavefront is removed by an obstacle, or when all but a part of the wavefront is removed by an

aperture or stop. The general theory which describes diffraction at large distances is due to

Fraunhofer,2 and is referred to as Fraunhofer diffraction.

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd

1In this book, we shall simplify our discussions of interference and diffraction by ignoring the relative

polarization of the constituent waves. This amounts to treating the waves as simple additive scalars. It also applies

to many basic systems where the combining electric fields are approximately parallel. (Theory predicts and

experiment confirms that two EM waves polarized perpendicular to one another will not show interference.)
2J. von Fraunhofer (1787–1826), optician in Munich, known mainly in his lifetime for his skill in making

telescope lenses and for solar spectroscopy. The dark absorption lines in the solar spectrum were named

‘Fraunhofer lines’.



8.1 Interference

Figure 8.1 shows two monochromatic plane waves, with the same r.m.s. amplitude3 A and wavelength

l, propagating at angles �y to the z axis. In the figure at a particular moment of time the solid and

broken lines correspond to positive and negative maxima. The two waves combine to give resultant

positive and negative maxima of þ2A and �2A where two solid and two broken lines intersect.

Where a solid line intersects with a broken line the resultant is zero. Along the line OY in the y

direction the resultant varies from 2A to zero to �2A to zero to þ2A and so on. The intensity4 of the

resultant, the square of the amplitude, varies as 4A2; 0; 4A2; 0; 4A2, etc. The pattern of intensity forms

uniformly spaced interference fringes. We now find the shape and spacing of these fringes.

We have already noted that in any harmonic wave with a plane wavefront the phase changes

linearly with distance along the direction of the wave, changing by 2p in distance l; the phase is

constant across the wavefront. Along the direction OY a distance y has a component y sin y in the

direction of the wave, so that the phase change5 relative to y ¼ 0 is

�f=2 ¼ �2p
y sin y
l

ð8:1Þ

z

y

Y
q

O

l

Figure 8.1 Interference between two plane waves. The waves are crossing at angles �y to the z axis

3A sinusoid with root mean square (r.m.s.) amplitude A has a peak amplitude
ffiffiffi
2

p
A:

4The energy flux of any wave (the power across a unit area perpendicular to the flow) is called intensity for

arbitrary waves, and irradiance for optical waves. In this book we do not use ‘radiant’ or ‘luminous’ intensity,

which are optical terms with a different meaning from conventional intensity (see Appendix 2).
5In this and the following section, f stands for the phase difference of the two waves.
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where the plus and minus signs correspond to the two waves.

The phasor diagram of Figure 8.2 shows the phasors for the two crossing waves at a general point y

on the line OY, with a phase difference f given by equation (8.1). Phasor diagrams for f=2 ¼ 0, p=4,
p=2, 3p=4 and p are shown in Figure 8.3, with the corresponding intensities. The intensity is given by

the square of the resultant amplitude:6

I ¼ ðAresultantÞ2 ¼ ð2A cosf=2Þ2

¼ 4I0 cos
2 f=2 ð8:2Þ

f
f

f2A cos

A A

Figure 8.2 Phasor diagram for crossing waves

Intensity 4A2

p

3p/4

p/2

p/4

Intensity 2A2

Intensity 2A2

Intensity 4A2

Intensity zero

Figure 8.3 Phasor diagrams across the interference fringes of Figure 7.1, at intervals of p=4 in the phase f=2

6The relation I ¼ A2 should be understood as a proportionality I / A2, valid for many kinds of waves in

physics. The specific constant of proportionality for electromagnetic waves, when A is identified with the

amplitude of the electric field, is given in Section 5.5.
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where I0 is the intensity of each plane wave alone. The variation along the y axis of the irradiance,

which for light is the luminance, is the cosine curve shown in Figure 8.4. This is known as a pattern of

cos-squared fringes.

8.2 Young’s Experiment

A simple example of interference between two crossing waves is Young’s experiment, which

provided the first demonstration of the wave nature of light. Two closely spaced narrow slits, A

and B in Figure 8.5, transmit two elements of a light wave from a single source. The two sets of

waves spread by diffraction, then overlap and interfere. If they then illuminate a screen, there will

be light and dark bands across the illuminated patch; these are the interference fringes. Figure 8.5

shows that the geometry of the fringes becomes simpler at increasing distance from the slits,

where the two sets of waves from A and B behave like two sets of nearly plane waves crossing at a

small angle, like the plane waves of Figure 8.1. We will consider the effect for monochromatic

light.

The light incident on the slits is a plane wave, so that each slit is the source of identical expanding

waves. Consider the sum of the two waves at a point P, which is sufficiently far from A and B for the

amplitudes of the two waves to be taken as equal. There is a phase difference between the two waves

depending on the small difference l between the two light paths, so that the waves add as in

Figure 8.6(b). The path difference is l ¼ d sin y, giving a phase difference f ¼ 2pl=l, and the

intensity I at P varies with the phase difference as in equation (8.2), giving

I ¼ 4I0 cos
2 pl
l
; ð8:3Þ

where I0 is the intensity of each wave at P. The phase reference may be taken at O, half-way between

the slits. The waves are then advanced and retarded on the reference by pl=l, as in the phasor diagram
of Figure 8.6(b). Thus where constructive interference occurs the intensity is four times that due to

Intensity A2
resultant

y sin q
–l/2 l/20

0

2I0

4I0

Figure 8.4 The pattern of intensity along the y axis for the crossing waves. Note that each wave alone would
give an intensity I0. The average intensity is 2I0, and the peak is 4I0
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A

B

Figure 8.5 Young’s experiment. Light from the two pinholes or slits A,B spreads by diffraction, and the two sets
of waves overlap and develop an interference pattern
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Resultant at P

x-axis

f =2p l/l
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l

q
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P

Figure 8.6 Young’s experiment. (a) Two wavelets spread out from the pair of slits, and interfere. Constructive
or destructive interference occurs at P according to whether the path difference l is Nl or ðN þ 1

2Þl. (b) Phasor
diagram for the sum at P, at a large distance from the slits. The phase reference (giving a horizontal phasor) is at
O and the phase difference between the two waves is f ¼ 2pl=l
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one slit, or twice the intensity due to two slits if interference did not happen. The conditions for

constructive and destructive interference are as follows:

constructive l ¼ d sin y ¼ Nl

destructive l ¼ d sin y ¼ N þ 1

2

� �
l

ð8:4Þ

where N is an integer. N is called the order of the interference; it is the number of whole wavelengths

difference in the paths to points where constructive interference takes place. The bright and dark

‘fringes’ which appear on a screen placed anywhere to the right of the double slit system can

therefore each be labelled according to their order. The highest possible order is the integral part of

d=l. The fringes are spaced uniformly in sin y at intervals l=d, and at a distance x the linear spacing,

in the small-angle approximation, is xl=d.
The condition that the distance is sufficient to allow the use of the simple relation l ¼ d sin y is

important; it is equivalent to the condition that the phase of any elementary wave from the screen is a

linear function of coordinates x and y in the plane of the screen. This is the condition for Fraunhofer

diffraction (Chapter 10), of which the present example is a special case. Under this condition, the whole of

the screen, whatever the pattern of apertures, can be considered as a single diffracting object.

The amplitude of the interference pattern of a pair of slit sources is the function

AðyÞ ¼ Að0Þ cos pd
l
sin y

� �����
����: ð8:5Þ

Að0Þ is the amplitude of the diffracted wave when y ¼ 0. The intensity is the square of AðyÞ, giving
cos-squared fringes

IðyÞ ¼ Ið0Þ cos2 pd
l
sin y

� �
: ð8:6Þ

Notice that the average intensity across several fringes is Ið0Þ=2 ¼ 2I0 (see Figure 8.4), because the

peaks of the upper half of the cos-squared fringes just fill the troughs of the lower half. This is an

example of an important general principle of all interference and diffraction effects: the energy is

redistributed in space by these effects, but remains in total the same. This rather obvious remark

enables some not so obvious predictions to be made; for example, if light is diffracted into the

geometrical shadow of an object, the intensity must begin to fall outside the geometrical shadow to

compensate. We examine this in Chapter 10; it is an example of Fresnel diffraction.

A Young’s double slit interference can easily be made with two parallel scratches on an

overexposed photographic film. Fringes will be seen if a distant street lamp is viewed through the

double slit; for slits 0.5mm apart the angular spacing l=d will be about 40.
Interference between two beams of light usually requires them to be derived from the same source.

There are two ways of achieving this. The first, division of wavefront, means utilizing spatially

separate parts of the wavefront as distinct sources, as in Young’s double slit or by using a diffraction

grating (Chapter 10). The second, which is the main subject of this chapter, is to divide the amplitude

of the wave by partial reflection, obtaining identical wavefronts which can be brought together by

different paths. The most familiar example of interference by this division of amplitude is the pattern

of coloured fringes seen in soap bubbles and thin oil films.
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8.3 Newton’s Rings

As an introduction to interference by amplitude division we describe Newton’s rings. These may be

observed with the optical system shown in Figure 8.7. A long-focus lens is placed in contact with a

flat glass plate, and illuminated at vertical incidence by the source reflected by the glass plate tilted at

45�. Observations are made with the microscope. The wavefront travelling downwards is partially

reflected at each boundary of the lens and plate. The two wavefronts that interfere to cause Newton’s

rings arise from partial reflection at the lower surface of the lens and the upper surface of the plate. As

they are both derived from the same source, the two waves can interfere with each other. Their

relative phases are determined by two factors:

1. The reflection coefficients of the two boundaries are of opposite sign (see Equation 5.29).

2. There is an extra path traversed by the wave reflected by the flat surface.

The first factor provides a phase difference of p, so that the centre of the pattern is dark, with the two

reflections in antiphase. (No reflection is to be expected anyway from the central area where the glass

is in contact and effectively continuous.) Succeeding rings are light and dark as the extra path length

is ðN � 1=2Þl or Nl, and the two reflections become in and out of phase. If the radius of curvature of

the bottom face of the lens is R the condition for brightness at r from the axis is

path difference ¼ 2h ¼ ðN � 1=2Þl ð8:7Þ

Extended light
source

Microscope
focal plane

Microscope
objective

Microscope position
for rings in transmission

Partially reflecting plate

Lens

Glass flat

Figure 8.7 Newton’s rings. The rings may conveniently be observed in reflection with the system shown. The
much lower visibility rings seen in transmission may be seen from below
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where the value of h in terms of R and r can be determined approximately by using the expansion

cos y ¼ 1� y2= 2þ . . .:

h ¼ Rð1� cos yÞ ¼ R
y2

2
þ . . .

� �
� r2

2R
: ð8:8Þ

This approximation, shown in Figure 8.8, often appears in optics; it is important to be clear under

what circumstances it is applicable. The expression

h ¼ r2

2R
ð8:9Þ

is a parabola that approximates to a circle of radius R for small r. Usually this approximation will be

good enough if the deviation between circle and parabola is small compared with a wavelength. If the

expansion of equation (8.8) is taken to one more term, this condition becomes

R
y4

4!
� l ð8:10Þ

so if R ¼ 100 cm and l ¼ 5� 10�5 cm, the condition is y � 5:8� 10�2 rad or a few degrees. Now at

r ¼ 1 cm, h ¼ 0:005 cm so 2h ¼ 0:01 cm. The order N of the ring is then 10�2=ð5� 10�5Þ ¼ 200. In

this example the approximation is good for many tens of rings.

These ring fringes are localized in the sense that to see them the microscope must be focused on the

boundary between the lens and optical flat. When this condition is satisfied the light reflected from a

point on the lens surface is brought ultimately to an image point by the same optical path, even

though it may have arrived from an extended source. The light reflected from the corresponding point

below on the flat is likewise brought to the same focal point, the only difference being that the path

for all rays from the flat is longer by approximately 2h than that from the lens surface. Combining

equations (8.7) and (8.9) gives

r ¼ ½RlðN � 1=2Þ�1=2 ð8:11Þ

R

h

2r

q

Figure 8.8 The intersecting chord theorem. The sagittal distance h is related to the chord 2r and radius R by
r2 ¼ R2 � ðR� hÞ2 ¼ hð2R� hÞ; for h � 2R the sagittal distance is h � r2=2R
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as the condition for brightness. The ring system then has a dark centre surrounded by rings getting

more and more crowded as r increases.

The visibility V of interference fringes, sometimes called fringe contrast, is defined in terms of the

maximum and minimum intensities as

V ¼ Imax � Imin

Imax þ Imin

: ð8:12Þ

The visibility of Newton’s rings is not intrinsically close to unity, as in the case of Young’s fringes

formed by two equal amplitude waves. It is instead determined by the relative amplitudes of the two

waves reflected from the lower surface of the lens and the upper surface of the flat. In practice these

are nearly the same, and the ring system is well defined and of high visibility. Quite the opposite is

true in the case of Newton’s rings seen in transmission rather than reflection; the interference is now

between a directly transmitted wave and a much smaller wave that has been twice reflected (see

Chapter 5 for the coefficient of reflection). The transmitted fringes are complementary: bright where

those reflected are dark, but the visibility is very low. A system for observing them is shown in

Figure 8.7. One way to see that they must arise is from a consideration of the conservation of energy.

Most of the light incident on the system is transmitted, but due to the interference effects discussed

above some areas (the bright rings) reflect some light back, whilst others (the dark rings) reflect

hardly at all. Hence, as the energy not reflected back is transmitted, the complementary low-visibility

system is seen in transmission. The well-known property of a photographic negative to look like a

positive if seen in reflected light from the front is somewhat analogous to this: the high-transmission

(transparent) parts look dark compared with the low-transmission (opaque) parts.

If instead of a monochromatic source, a white light source is substituted, a dark spot is still seen in

the centre of the reflected pattern. The scale of the pattern increases with wavelength, and the

overlapping ring systems in all the different wavelengths get increasingly out of step, giving a white

field only a few orders away from the centre. Between the dark and white regions is a system of

coloured rings in a sequence called Newton’s colours, as the various colours are added or subtracted

according to their wavelength and the distance between the surfaces.

8.4 Interference Effects with a Plane-Parallel Plate

The case of Newton’s rings is only one example of interference effects observed between two beams

derived by the division of amplitude by partial reflections from two surfaces. Consider first a

monochromatic point source S illuminating a parallel-sided slab of transparent material of refraction

index n, shown in Figure 8.9. Then if the direct path is excluded there are two paths from S to P

corresponding to reflections from the front and back of the slab, and P will be light or dark according

to whether the optical paths (taking into account the phase change at the upper reflection) differ by an

odd or even number of half wavelengths. Clearly there will be circular symmetry about the line SN

through the source normal to the slab. Geometrically the system is like Young’s double slit, the

interference being between light from the two images S1 and S2 of S, in the front and back surfaces of

the slab. The fringes are non-localized in space, and a photographic plate in any plane parallel to the

slab (for example) would record circular fringes centred on SN. The order of the fringes is high if the

thickness of the plate is large compared with the wavelength, so that the source must be highly

monochromatic if fringes are to be observed. Similarly if the source is not a point, but extended, the

fringes from different parts of the source will overlap and the pattern may be lost.
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A surprising change is made in the system by inserting a lens as shown in Figure 8.10, and

observing the distribution of brightness in its focal plane. The lens brings together at a point P all the

rays that leave the plate at a particular angle; the figure shows two of these for each of three points in

the source. The source may now be extended, since the path difference for all pairs of rays reflected in

the front and back faces of the slab is the same, if they leave the plate at the same angle, regardless of

which part of the extended source they come from. Each element of the extended source thus

contributes twice to the light wave at P, once by reflection at the back, and once by reflection at the

front. These contributions interfere either constructively or destructively, as determined by their

different path lengths.

As only the angle of incidence determines the brightness or darkness, these fringes are called

fringes of equal inclination. It is easy to see from Figure 8.11 that the conditions for bright and dark

fringes are related to the angle of refraction r, inside the slab, by

2nh cos r ¼ N þ 1

2

� �
l for bright fringes

2nh cos r ¼ Nl for dark fringes:

ð8:13Þ

Figure 8.9 A point source S has two images S1 and S2 in the top and bottom surfaces of a parallel-sided slab.
The interference in the light from these gives non-localized fringes similar to Young’s
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The visibility of the fringes is again not necessarily unity. Let Af and Ab be the amplitudes of light

arriving at P from the front and back of the slab. Then the irradiance will be proportional to

A2 ¼ A2
f þ A2

b þ 2AfAb cosf ð8:14Þ

based on a phasor diagram similar to Figure 8.6(b) and where

f ¼ 4pnh cos r
l

þ p: ð8:15Þ

From equation (8.14) putting cosf ¼ 1 for maximum irradiance and cosf ¼ �1 for minimum

irradiance,

V ¼ 2AfAb

A2
f þ A2

b

: ð8:16Þ

So with a thick slab of material and a monochromatic extended source, fringes may be observed in the

focal plane of the lens in Figure 8.10. The irradiance profile of the fringes follows a squared cosine

Figure 8.11 The path difference for rays ABF and ABCDE in a film with refractive index n. With point B0 the
mirror image of B, right triangles B0C0C and BC0C are congruent Since B0CD is the same length as BCD, and optical
path difference between the two rays is 2nh cos r. By Snell’s law, there is no additional path difference as
wavefront BD in the film becomes FE in the air.

Extended light source

Parallel-sided slab

P

f

Figure 8.10 The effect of introducing a lens which brings all parallel rays to a single point P is to allow fringes
of equal inclination to be observed with an extended source
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function, as in equation (8.3) for Young’s double slit; they are often referred to as cos-squared fringes,

but their visibility is less than unity. Notice that the present discussion has excluded multiple

reflections, a good approximation unless special measures are taken to increase the reflectivity. This

point is returned to in Section 8.7.

8.5 Thin Films

The parallel-sided slab discussed in the previous section can produce fringes of a very high order; that

is to say, the path difference between the interfering beams might be many thousands of wavelengths.

Thin films in which the thickness is only a few wavelengths display interesting and somewhat

different interference phenomena, which do not depend on the film having parallel sides. Interference

fringes now appear in the surface of the film; their position is determined mainly by the thickness of

the film and very little by the angle at which they are seen.

Consider first the familiar observation of light from the sky reflected in a thin oil film on water

(Figure 8.12). Each colour forms a set of interference fringes across the film, the positions of the

fringes depending on wavelength and the thickness of the film. Each part of the film reflects two

waves, one from the front and one from the back of the oil film; the phase difference of these two

waves depends on both angle r and thickness h, but in practice mainly on h so that the interference

effects appear to outline the contours of equal thickness in the film.

There are in fact two extreme cases for interference in thin films. If the thickness is completely

uniform, then only a variation of the angle r can change the path difference; fringes will therefore be

seen outlining directions where r is constant, as in the thick slab already discussed. The fringes will

be very broad, as a large change in cos r corresponds to a small change in path difference when h is

small. These are fringes of constant inclination. Alternatively, as with the oil film or a soap bubble,

the thickness may vary rapidly from place to place while cos r changes little; fringes of constant

thickness are then seen. These are known as Fizeau fringes.

The fringes of constant thickness seem to be located within the film, as their position is determined

by h and not by r; by contrast the fringes of constant inclination are seen in fixed directions, and

therefore appear to be at infinite distance. In practice, the fringes seen in oil films are also determined in

small part by the angle r, so that they are located just behind the film, as can be verified by the observer

moving his or her head from side to side, looking for parallactic motion of the fringes across the film.

Thin film

Extended
light source

Observer

Figure 8.12 Fringes are seen in a thin film by reflection of an extended source of light
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Fringes of constant thickness have many practical applications, as they allow measurements of

thickness to be made to a fraction of a wavelength.

8.6 Michelson’s Spectral Interferometer

An instrument that has been very influential in the development of interference optics, both

theoretical and practical, is Michelson’s interferometer (not to be confused with his stellar

interferometer, Chapter 9). Its simplest form is shown in Figure 8.13, which may seem at first

sight to bear little relationship to the optical systems discussed in connection with thin films in the last

section. In fact they are closely related.

Light from the extended source S is split in amplitude by a half-silvered mirror D, and the two

beams are then reflected by the mirrors M1 and M2. A further partial reflection in D sends the two

beams out towards the observer at P. An observer can see the source S reflected simultaneously in the

two mirrors. The observer can also see an image M0
2 of the mirror M2 close to the surface of M1.

The mirror M2 is equipped with screws to allow its inclination to be adjusted, so that M0
2 can be made

parallel with M1; M1 itself is mounted on a screw-controlled carriage so that the perpendicular

distance between M1 and M0
2 can be adjusted over a considerable range.

When M1 and M
0
2 nearly coincide, the view of the source S is exactly the same as the view reflected

in a thin film, and fringes will be seen in the surface of M1. The equivalent thin film is the space

between M1 and M0
2, so that the path difference between two rays reaching P from a point on S is

determined by the thickness of this space. Exact equality of the optical paths is ensured for the

situation when M1 and M0
2 coincide by the insertion of the glass plate C, which is the same thickness

′

Extended light
source

C

M

M

M

P

S

1

2

D

2

Figure 8.13 Michelson’s interferometer. Observations are made from P either directly or with a microscope or
camera. An observer at P sees the extended light source S reflected in a ‘thin film’ consisting of the mirror M1 and
the image M0

2 of the mirror M2. Fringes of constant thickness are generally seen in this thin film, although if M1

and M0
2 are made accurately parallel the fringes take the form of a circular pattern of fringes of constant

inclination
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as D. Each ray then traverses a glass plate twice, and the paths will remain equal for all wavelengths

even if the refractive index of the glass is dispersive.

Suppose that the distance between M1 and M0
2 is small, but that M1 is not parallel to M0

2. As the

mirrors are accurately plane the fringes will then be light and dark lines across the mirrors; these

are fringes of constant thickness. The angle of M2 can then be adjusted, and M1 and M0
2 can be made

parallel to a small fraction of a wavelength; the linear fringes of equal thickness are then replaced by

fringes of equal inclination. For a bright fringe of order N seen at angle y to the mirror normal, with

an apparent mirror spacing d

2d cos y ¼ Nl: ð8:17Þ

This represents the special case of equation (8.13) with n ¼ 1 (air-filled thin film), h ¼ d, r ¼ y, and
without the extra term of l=2 due to the phase reversal. Adjustment of the position of M1 will now

make the fringes expand outwards from the centre if the distance M1M
0
2 is decreasing, and shrink

inwards towards the centre if it is increasing. Finally a position can be attained when the field is

uniformly bright all over. This corresponds to the planes of M1 and M0
2 coinciding. The lightness or

darkness of the field in this condition depends on the difference f in phase change at the two

reflections in D; if f ¼ p and the division in amplitude by D has been accurately equal the field will

be black. Suppose that M2 is now tipped about its centre so that the linear fringes of equal inclination

are seen. The centre black fringe then corresponds to the zero order. If the monochromatic source S is

now replaced by a white light, the central dark fringe will remain, and on either side of it a few fringes

will be seen. These will display Newton’s colours, merging into white light a few fringes away on

each side when the overlapping of the different coloured fringes is complete. So substitution of a

white light source is useful as it allows identification of the zeroth-order fringe. The visibility of

fringes in monochromatic light is unity even for high-order fringes.

The basic properties then of the Michelson interferometer are the ability:

1. To make both arms equal in optical length to within a fraction of a wavelength.

2. To measure changes of position as measured on a scale (the positions of M1) in terms of

wavelength by counting fringes.

3. To produce interference fringes of a known high order (number of wavelengths difference in path

lengths).

The last of these is the basis for the use of Michelson’s interferometer for measuring the width and

shape of spectral lines, as discussed in Chapter 12.

A closely related interferometer is the Mach–Zehnder interferometer described in Chapter 9. Here

the two beams are again separated by a mirror system, but in an arrangement which is convenient for

inserting optical components into one of the beams to measure differences in optical paths by

observing fringe displacements.

8.7 Multiple Beam Interference

In the discussion of interference effects in parallel-sided slabs and in thin films we have so far taken

account of only two reflected beams, and ignored any multiple reflections. Unless special measures

are taken to increase them, such reflections are very weak, but if appropriate steps are taken so that
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they are enhanced, allowing perhaps 10 or more beams to be combined, the fringes change their

character and become very much sharper. By suitably coating the faces of a slab with a thin metallic

film it is possible to increase the reflection coefficient, so that the front face reflects a large fraction of

the light incident upon it. The small amount that does get through to the inside of the slab is reflected

back and forth many times, a small proportion emerging at each reflection. It is the interference of

these many emerging rays, rather than just two, that gives multiple interference its special character.

This simple case is illustrated in Figure 8.14. Most of the incident light S is reflected into the ray

R1, but after that the further rays on the reflection side R2, R3,... are all of similar strength, dying away

gradually. Let A be the amplitude of the incident ray. Then if r and t are the reflection and

transmission coefficients from the surrounding medium to the slab, and r0 and t0 the corresponding

quantities from slab to medium, we can write down the amplitude of the reflected rays

Ar; Att0r0; Att0r0
3
; . . . ð8:18Þ

and of the transmitted rays

Att0; Att0r0
2
; Att0r0

4
; . . . : ð8:19Þ

With the exception of the first large reflected ray these amplitudes go in geometric progression, and

the closer to unity that r0 is made, the more slowly does their size die away. Their phase depends on y,
the angle of refraction inside the plate, its thickness h and its refraction index n. The relative phase of

the rays on a plane outside the slab perpendicular to the ray depends on y (see Figure 8.11) as

c ¼ 4pnh cos y
l

: ð8:20Þ

If now, as in the case of two-beam interference, we provide a lens to bring the transmitted rays to a

focus we can find the conditions for constructive and destructive interference. For constructive

interference, all the slowly declining vectors will be in phase if

2nh cos y ¼ Nl: ð8:21Þ
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Figure 8.14 Multiple reflections in a parallel-sided slab
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Consequently with an extended source fringes of equal inclination, that is to say circles, will be seen,

each corresponding to a particular value of N. It is when we consider the spaces between these fringes

that the special character of multiple beam interference emerges. The angle between each of the many

phasors is given by c in equation (8.20); a change in c of 2p takes us to the next maximum, but a

change from 2p by only a very small amount causes the long string of nearly equal phasors to curl up

into a near circle. For this reason the fringes are very sharp, a plot of the irradiance showing almost no

light transmitted except close to the maxima.

If p beams are transmitted the complex amplitude is the sum of the geometric series

AðpÞ ¼ Att0½1þ r0
2
expðicÞ þ . . .þ r0

2ðp�1Þ
expðiðp� 1Þc�: ð8:22Þ

The sum of this geometric series is

AðpÞ ¼ Att0
1� r02p expðipcÞ
1� r02 expðicÞ

 !
: ð8:23Þ

If the number of beams p becomes large so that r02p becomes very small, we can ignore that term, and

calculate the irradiance I as Að1ÞA�ð1Þ, giving

I ¼ ðAtt0Þ2

½1� r02 expðicÞ�½1� r02 expð�icÞ�
ð8:24Þ

or

I ¼ ðAtt0Þ2

1þ r04 � 2r02 cosc
: ð8:25Þ

In this expression we can recognize A2 as the irradiance of the incident wave, Ii. The expression for

transmitted irradiance It is more neatly expressed in terms of sin2ðc=2Þ:

It

Ii
¼ ðtt0Þ2

ð1� r02Þ2 þ 4r02 sin2ðc=2Þ
: ð8:26Þ

Now it may be shown from a study of the Fresnel coefficients in Section 5.3 that tt0 ¼ 1� r02 so

that equation (8.26) may be further simplified to

It

Ii
¼ 1

1þ F sin2ðc=2Þ
ð8:27Þ

where

F ¼ ð2r0Þ2

ð1� r02Þ2
: ð8:28Þ

Notice that the parameter F becomes very large as r02 approaches unity. For example, if r02 ¼ 0:8,
F ¼ 80. The effect of this is to keep the transmitted irradiance (equation (8.27)) always very small,

except when c is close enough to a multiple of 2p for sin2ðc=2Þ to become less than 1=F. The value of
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It=Ii then shoots rapidly up to unity when c is a multiple of 2p. Figure 8.15 is a plot of It=Ii for several
values of F. The sharp fringes of multiple beam interference are known as Fabry–Pérot fringes.

The sharpness of Fabry–Pérot fringes is often specified as the finesse F , which is the ratio of the

separation of adjacent maxima to the half-width of a fringe, defined as the width between points of

half irradiance. From equation (8.27) the phase shift c1=2 for the fringe irradiance to be halved is

given by

1þ F sin2
c1=2

2
¼ 2 ð8:29Þ

giving

c1=2 ¼ 2 sin�1ð1=
ffiffiffiffi
F

p
Þ: ð8:30Þ

In practice F is large, and sin�1ð1=
ffiffiffiffi
F

p
Þ � 1=

ffiffiffiffi
F

p
. Since the phase difference between two adjacent

fringes is 2p, the finesse F is the ratio 2p=2c1=2, giving

F ¼ p
ffiffiffiffi
F

p

2
: ð8:31Þ

The multiple beams of the Fabry–Pérot act very like those of a diffraction grating (see Chapter 11):

the many phasors arising from the multiple reflections give only a small resultant unless the angle y at

which they traverse the slab is just right to put them all in phase. So the slab is a device that will allow

light of any fixed wavelength to traverse it only at certain extremely well-defined angles. It can therefore

be used as a filter transmitting only selected narrow-wavelength ranges, or as a spectrometer.

8.8 The Fabry–Pérot Interferometer

This instrument, illustrated in Figure 8.16, uses the effect discussed in the previous section to produce

circular, sharply defined interference fringes from the light from an extended source. The rings on the
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Figure 8.15 Cross-sections of Fabry–Pérot fringes for several values of the parameter F
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plate P are images of those points on the source producing (with the help of the first lens) light going

in suitable directions between the lenses. The central cavity is usually made of two glass plates, with

their inner surfaces coated with partially transparent films of high reflectivity. These plates are held

apart by an optically worked spacer made of invar or silica, to which they are pressed by springs. This

device is called a Fabry–Pérot etalon.7

If the light from the source is not monochromatic but contains two spectral components, the ring

system is doubled. It is possible by this means to distinguish optically, or to ‘resolve’, even the

hyperfine structure of spectral lines directly. Since its introduction by Fabry and Pérot in 1899 the

instrument has dominated the field of high-resolution spectrometry. We refer again to the Fabry–Pérot

interferometer and its use in high-resolution spectrometry in Chapter 12.

8.9 Interference Filters

A parallel-sided glass plate, or a cavity between two parallel glass plates, acts as a spectral filter on

light which falls on it at any given angle. Figure 8.15 shows how the irradiance of the transmitted

light varies with the phase difference c, which is inversely proportional to wavelength. The curve in

Figure 8.15 is therefore the transmission characteristic of the filter, showing its relative transmission

properties over a range of wavelengths.

A combination of two or more such filters, using plates or cavities with different thicknesses, can

be arranged to transmit only one narrow spectral band. Filters transmitting a band only 1 nm wide at

optical wavelengths can be made in this way. They can even be made tunable by making the thickness

variable; a convenient way of doing this is to move one of the reflecting surfaces by attaching a

piezoelectric transducer in which an applied electric field induces a small mechanical movement.

An alternative is to vary the optical thickness of the cavity by changing the gas pressure within the

cavity, which varies the refractive index.

Extended
source

Reflective
coasting

P

Figure 8.16 A simple Fabry–Pérot interferometer. Without the cavity or echelon an image of the broad source
is formed on P. When the echelon is in place, only those parts of the image corresponding to allowable angles
through the echelon are transmitted, giving the extremely well-defined ring system

7From étalon, a standard; it can be used as a standard of length calibrated in terms of the wavelength of

spectral lines.
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A very high reflection coefficient, giving a high finesse, is essential for high resolution in

interferometers and in interferometric filters. Since thin metal films absorb rather too much light, it

is preferable to use dielectric coatings on glass. The reflection coefficient then depends on the step of

refractive index at the interface; it can be increased by using a series of layers of dielectric, with

alternate high and low refractive indices. The reflectivity at a given wavelength depends on the

thickness of the layers; multiple layers are used for the selective reflection of a defined range of

wavelengths. A very high reflection coefficient can be obtained at a single wavelength; mirrors used in

the laser interferometers described in Chapter 9 may have reflection coefficients up to 99.999%.

Fabry–Pérot etalons often form an essential component of lasers (Chapter 15), where they are

referred to as resonant cavities. A helium–neon gas laser, for example, has a cavity formed by two

mirrors enclosing a gas-filled tube; the cavity resonator determines the wavelength of the laser action

in the gas. The wavelength of light from semiconductor lasers is similarly determined by a resonant

cavity, which is formed by the polished faces of the semiconductor material.

Problem 8.1 Numerical examples

(i) An air-filled wedge between two plane glass plates is illuminated by a diffuse source of light, wavelength

600 nm. Fringes are seen in the light reflected by the air wedge, spaced 5mm apart. Find the angle a
between the glass plates. Assume a � 1 rad and near-normal incidence.

(ii) Newton’s rings are formed by a lens face with radius of curvature 1m in contact with a plane surface, using

sodium light with wavelength 589 nm. Find the radii of the first and second bright rings.

(iii) Newton’s rings are formed using the bright sodium spectral line, which is a doublet with wavelengths

589.0 and 589.6 nm. Find the order of rings where the bright ring of one component of the doublet falls on

a dark ring of the other.

Problem 8.2
Young’s double slit fringes are formed by two side-by-side coherent sources. Consider in contrast the fringe

pattern formed by two coherent point sources one in front of the other, and relate it to the pattern from a single

source seen reflected in a parallel-sided slab.

Problem 8.3
The colours in a soap bubble often fade just before the bubble bursts, and the film becomes dark. Estimate the

film thickness at this stage.

Problem 8.4
When two object-glasses are laid upon one another, so as to make the rings of the colours appear, though with my

naked eye I could not discern above eight or nine of those rings, yet by viewing them through a prism I could see

a far greater multitude, insomuch that I could number more than forty. . .But it was on but one side of these rings.
Newton, Opticks. Explain!

Problem 8.5
The centre of Newton’s rings is usually dark when observed in reflected light. Is this the same phenomenon as in the

soap film of Problem 8.3? What happens to the size and intensity of the fringe pattern if oil with refractive index close

to those of the lens and the flat surface fills the air space between them?

Problem 8.6
Show that, contrary to expectation, a transparent film on a perfectly reflecting surface does not show interference

fringes in reflected light. This will require analysis following the lines of Section 8.7, noting the change of phase
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at internal reflection at the top face. Based on Fresnel’s theory of section 5.3, you can assume that the reflection

and transmission coefficients for the bottom face satisfy r ¼ �r0 and tt0 ¼ 1� r02.

Problem 8.7
What happens to the fringe spacing in the air-filled wedge of Problem 8.1 if a liquid with refractive index n fills

the wedge? What happens to the brightness and visibility of the fringes if n approaches the refractive index of the

glass?

Problem 8.8
The following three problems all relate to the Fabry–Pérot etalon.

Prove that tt0 ¼ 1� r02. Do this separately for polarization parallel and perpendicular to the plane of incidence.

Problem 8.9
By solving the separate contributions as in Section 8.7, evaluate the reflected irradiance, Ir, of a Fabry–Pérot

etalon and verify that Ir þ It ¼ Ii. (Hint: In addition to tt0 ¼ 1� r02, you will need to apply the correct relation

between r and r0 based on the Fresnel results of Section 5.3.)

Problem 8.10
Find the highest order fringe visible in a Fabry–Pérot etalon with spacing 1 cm, for light with wavelength

600.000 nm. What is the highest order for a wavelength 600.010 nm? What are the angular radii of the highest

order fringes for these wavelengths?

Problem 8.11
The structure of a doublet spectral line is to be examined in a Fabry–Pérot spectrometer. If the separation of the

doublet is 0.0043 nm at a wavelength of 475 nm, what is the spacing of the etalon which places the Nth order of

one component on top of the ðN þ 1Þth order of the other near the centre of the pattern, where y � 0?

Problem 8.12
If the reflectance (see Section 5.3) in a Fabry–Pérot etalon is 60%, find the ratio of the irradiance at maximum to

that half-way between maxima.

Problem 8.13
A parallel beam of white light is passed through a Fabry–Pérot etalon at normal incidence and focused on the slit

of a spectrograph. Describe the appearance of the spectrum.

The slit is illuminated also by mercury light. If 200 bands are seen in the spectrum between the blue and green

mercury lines (wavelengths 546 and 436 nm), what is the spacing h of the etalon?

Problem 8.14
Consider a Fabry–Pérot etalon with light bouncing within as analogous to a dampened harmonic oscillator. For

high reflectivity ðr02 � 1Þ, the losses per cycle (two successive reflections, which is considered as 2p radians) are

relatively small, and by analogy with a weakly damped oscillator, we can define a ‘‘quality factor’’, Q, in terms

of irradiance by Q ¼(initial I/loss of I per radian); more precisely, if 1,2,3 are three successive rays within the

etalon, we define Q ¼ 2pI1=ðI1 � I3Þ.
Find Q and show that, for high reflectivity, F ¼ ð2Q=pÞ2.
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9 Interferometry: Length, Angle
and Rotation

Following a method suggested by Fizeau in 1868, Professor Michelson has. . . produced what is perhaps the most

ingenious and sensational instrument in the service of astronomy – the interferometer.

Sir James Jeans, The Universe Around Us, Cambridge University Press, 1930.

Optical interferometers, such as the Michelson and the Fabry–Pérot (Chapter 8), can be used to

measure distances in terms of the wavelength of light. Most of the interferometers for this purpose are

two-beam interferometers, using amplitude division. Their performance may often be improved by

using multiple beams, as in the Fabry–Pérot; the principle is the same, but the fringes are sharper.

Interferometers can also be used to measure angular distributions of brightness across sources with

small angular diameters. Michelson was again the pioneer, with his stellar interferometer which made

the first measurements of the angular diameters of stars.

In this chapter we describe measurements of lengths ranging from a small fraction of a wavelength,

in which the purpose may be to test the optical quality of a surface, to some tens or hundreds of

metres, where the objective may be to measure the stability of a large structure or to test the theory of

relativity. Interferometers measure optical path along a light beam, i.e. the product of geometric path

and refractive index; by comparing the optical paths of two light beams very small differences in

physical length or refractive index can be measured.

We continue with the measurement of the angular size of light sources, which is achieved by

interferometers using elements separated not along a light beam but across a wavefront.

9.1 The Rayleigh Refractometer

We start with the simplest of refractive index measurements. In any two-path interferometer there

is a comparison of the optical length of two separate paths. Rayleigh put this to use in measuring

the refractive index of a gas. His refractometer (Figure 9.1) was based on Young’s double slits,

although any other two-beam interferometer could be used. The tubes T1 and T2 are in the

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



separate light paths from the slits S1 and S2, illuminated coherently from a single source. When

the pressure of gas is changed in one of the tubes, the fringe system, viewed by an eyepiece E at

the focus of a long-focus lens, moves across the field of view. A count of the fringes ðNÞ as they

move provides a direct measurement of the change in optical path through the tube, and hence

the change in refractive index dn as the amount of gas changes. For a tube length l and vacuum

wavelength l0

N ¼ ldn
l0

: ð9:1Þ

For a dilute gas the refractive index n differs from unity by an amount proportional to density, so

that for a fixed temperature n� 1 is proportional to pressure. The refractive index obtained from

a single measurement can then be used to calculate the value for any other pressure by simple

proportion.

Example. A Rayleigh refractometer is used to measure the refractive index of hydrogen gas. The

tubes are 100 cm long, and a pressure change of 50 cm mercury gives a count of 145.7 fringes at

l ¼ 589:3 nm. Show that the refractive index n at normal atmospheric pressure (76 cm mercury) is

given by n� 1 ¼ 1:305 � 10�4:

9.2 Wedge Fringes and End Gauges

Interferometers measuring physical length in terms of light wavelength are used to establish and

compare standards of length in the form of end gauges. These are metal bars with polished ends that

can be used as reflecting mirrors in interferometers.

The simplest comparison that can be made is between two end gauges which are nominally of the

same length. They can be placed together on a flat surface, and a partially silvered optically flat glass

plate placed on top (Figure 9.2). Thin-film fringes (Fizeau fringes) are then seen in the wedge cavity

over each of the gauges, with a spacing depending on the angle between the gauge and the glass plate;

the difference in height of the two gauges can easily be found by counting the fringes. Irregularities in

the reflecting surfaces are seen as deviations from straight lines in the reflected wedge fringes. The

partial silvering of the glass plate gives a multi-beam interference effect, like the transmission fringes

in the Fabry–Pérot interferometer. These fringes are so sharp that surface discontinuities down to

0.3 nm can be detected.

Slits S1S2 Lens L

Eyepiece EF

T1

T2

Figure 9.1 The Rayleigh refractometer. S1, S2 are illuminated by a common source of light. Interference fringes
are formed at the focal plane F of the lens L, and viewed with an eyepiece E. The fringes move across the field of
view when the gas pressure is changed in one of the tubes T1, T2
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Interferometers for measuring larger differences in light paths are usually based on the Michelson

interferometer. An example of the direct measurement of the length of an end gauge is shown in

Figure 9.3. Here the end gauge G1G2 is placed firmly in contact with an optically flat reflector M1,

so that M1 and the end of the gauge G1 can both reflect light in the field of the interferometer.

Figure 9.2 Comparison of the lengths of two end gauges. Wedge fringes are formed in the air gap between a
glass plate and the ends of the gauges. The spacing of the fringes, which are viewed from above the plate, is a
measure of the wedge angle

H

G1

M1

M2

G2

Fringe pattern

Figure 9.3 End gauge interferometer. This is similar to a Michelson interferometer, but with fixed mirrors. The
gauge G1G2 is in contact with M1, so that the centre of the field of view, seen from above, shows fringes from G1,
while the outer part shows fringes from M1, as shown in the inset diagram
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The reflector M2 is inclined at a small angle, so that the field of view is crossed with parallel fringes,

as in Figure 9.3. Part of the field shows fringes from G1 and part from M1.

The distance G1G2 is measured as a shift of the fringe pattern, in wavelengths of the particular

light in use. Only the fractional part can be measured, however. The whole number of fringes can

be found by repeating the measurement with other wavelengths of light, e.g. using four

different wavelengths of light from a cadmium lamp, each of which is known to about 1 part in

108. When the fractional parts are all known, the whole numbers can be found by computation (see

Problem 9.1(iii)).

9.3 The Twyman and Green Interferometer

The fringes shown in Figure 9.3 are straight and evenly spaced. This would only be so if the surfaces

were precisely flat: any departures from flatness would be seen as distortions in the fringe pattern.

Twin beam interferometers can evidently be used to measure the flatness of a reflecting surface. The

Twyman and Green interferometer (Figure 9.4(a)) is a twin beam interferometer designed for this

purpose. It can also be used to test the transmission properties of transparent optical components.

The Twyman and Green interferometer is a development of the Michelson interferometer in which

the source of light is a plane wavefront coherent over the whole field rather than a broad incoherent

source. Originally this was achieved by the use of a pinhole source at the focus of a high-quality lens,

but now a suitable source is a laser beam. With this arrangement light paths can be compared over the

whole field. For example, the arrangement of Figure 9.4(a) may be used to compare the surfaces of

two mirrors, while in (b) the optical path through a lens is measured across the whole field. As with

the measurement of end gauges in Figure 9.3, the mirror M1 is slightly tilted, so that a perfect optical

system yields a system of parallel fringes across the field of view; imperfections then show as

deviations from straightness.

M1

L1

L2

P

S

Test
piece

Test
piece

(a) (b)

M2 M3HW

E

Figure 9.4 Twyman and Green interferometer. The half-silvered plate H and the two mirrors M1, M2 are arranged
as in a Michelson interferometer, but the source of light is a coherent plane wavefront W, and the fringes are
either recorded directly on a photographic plate at P or viewed at the focus of the lens L2. The field of view is
uniformly bright if M1 and M2 are exactly aligned. Imperfections in optical path, as for example, (a) through a
test piece, show as variations of brightness, or (b) (inset) M2 can be replaced by a spherical mirror M3 when a
converging lens is to be tested
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The Mach–Zehnder interferometer, shown in Figure 9.5, is another amplitude-splitting

device intended for comparing optical paths in separated beams. The separation of the beams may

be large, so that one beam may for example traverse a wind tunnel in the region of a shock wave

(Figure 9.6), or it may traverse a plasma cloud in a thermonuclear test reactor. Variations of refractive

index across the field are seen as deviations from straightness in a set of plane-parallel fringes.

9.4 The Standard of Length

The internationally defined standard of length is the distance travelled in vacuo by light in unit time.1

Before 1983 the metre was defined as a number of wavelengths of a narrow spectral line in krypton,

but because of the finite width of this line this standard was reproducible only to about 3 parts in 108.

In contrast, the standard of time can be reproduced with an accuracy of 1 part in 1013; this is achieved

by linking a clock such as a quartz crystal oscillator through a series of harmonic generators to the

caesium standard.

The velocity of light c ¼ 299 792 458 m s�1 is therefore a defined constant which was chosen

in 1983 to give agreement, to the best possible accuracy, between the new and old defini-

tions of the unit of length. If the frequency of a narrow-bandwidth laser can be measured in

terms of the unit of time, then the wavelength is known in standard units, and it can be used to

calibrate a secondary standard such as a metre-long end gauge at the wavelength of a chosen

spectral line.

Michelson made the first measurements of the metre in terms of wavelengths in a different era,

when the metre was defined by a mechanical standard; he was therefore measuring the wavelength of

light rather than measuring the metre. The moving mirror of a Michelson interferometer was mounted

on a carriage on accurate sliding guides alongside the standard, and with a microscope attached for

Diffuse
source L

M

M

S1

S2

Figure 9.5 Ray paths in the Mach–Zehnder interferometer. The beam splitter S1 and recombiner S2 are half-
reflecting mirrors. The mirrors M are fully reflecting. An extended light source L may be used

1The definition (by the Conference Gènèrale des Poids et Mesures, 1983) is: ‘‘the metre is the length of the

path travelled by light in vacuo during a time interval of 1/299 792 458 of a second’’. The standard of time, the

second, is defined using precision atomic clocks as the duration of 99 162 631 770 periods of radiation between

two hyperfine levels of the caesium atom.
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setting on the fiducial marks of the metre. A direct count of fringes as the carriage traversed the metre

would involve some millions of fringes; furthermore, the spectral line sources available to Michelson

were not sufficiently narrow to allow the use of path difference as large as a metre. He therefore used

an intermediate-sized standard of length called an etalon, and built up the full length by adding a

series of etalons.

9.5 The Michelson–Morley Experiment

This classic experiment, which is now regarded as a test of special relativity, was originally devised

as a measurement of the velocity of the Earth through space. If light could be regarded as a wave in a

medium, called the ether, through which the Earth was moving, the velocity of light as measured on

Earth would depend on its direction of travel. A Michelson interferometer, with one light path along

this direction and the other at right angles, would show the effect as a fringe shift. The shift could be

detected by rotating the interferometer so as to interchange the optical paths (Figure 9.7). To preserve

the stability of the interferometer, it was mounted on a stone bed floated in mercury.

In the Michelson–Morley experiment both light paths were increased to 11 metres by folding them

between a series of mirrors. The expected effect, according to the ether theory, of the Earth’s orbital

velocity was nevertheless only 0.4 of a fringe. This was to be detected by rotating the whole apparatus

by 90�, so interchanging the arms parallel and perpendicular to the Earth’s motion.

The path difference expected from simple ‘‘classical’’ arguments is found from the times of

travel t1 and t2 along the two beams, assigning a velocity v to the ether drift. Assume for simplicity

that the Sun is essentially at rest in the ether. For an observer moving with the velocity v of the Earth

in its orbit (and ignoring the much smaller rotational velocity vrot ’ 2%vorb), the ether should then be

moving past the interferometer with the same velocity v, so that the velocity of light along and against

Figure 9.6 Interference fringes obtained in a Mach–Zehnder interferometer, showing variations of refractive
index around a wind-tunnel model
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the ether drift would be cþ v and c� v. For a light path l the time t1 along and against the ether flow

is

t1 ¼ l

c� v
þ l

cþ v

¼ 2l

c
g2

ð9:2Þ

where g ¼ ð1 � v2=c2Þ�1=2
.

M1

M2

Turntable

O l

l

Earth velocity u

(a)

υt2
1
2

M2

ct2
l2

1

(b)

Figure 9.7 (a) The Michelson–Morley experiment. The path to mirror M1 is initially along the direction of
the Earth’s orbital motion; the whole interferometer can be rotated to bring the path to M2 into this direction.
(b) The path followed by beam OM2, according to classical theory, as viewed in the rest frame of the ether. The
arrow indicates that the apparatus is moving to the right at speed v
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The time t2 transverse to the flow is increased by the movement of the mirror with velocity v, as

shown in Figure 9.7, so that

ct2

2

� �2

¼ vt2
2

� �2

þ l2 ð9:3Þ

giving

t2 ¼ 2l

c
g ð9:4Þ

t1 � t2 ¼ 2l

c
ðg2 � gÞ: ð9:5Þ

Expanding each term in g into a series gives a good approximation

t1 � t2 � l

c

v2

c2

� �
: ð9:6Þ

The expected fringe shift would be cðt1 � t2Þ=l, which would reverse when the interferometer was

rotated through 90�. For a path l ¼ 11 m, wavelength l ¼ 550 nm and an ether velocity

v ¼ 30 km s�1, which is the Earth’s orbital speed, there would be a shift in the fringe pattern by

0.4 fringes on rotation. No such fringe shift was detected. Just in case the Earth happened to be

moving at the same velocity as the ether, the experiment was repeated six months later when the

Earth’s velocity was reversed. Again there was no fringe shift.

We should realize that this result was a great surprise when it was first obtained in 1887, which was

18 years before Einstein published his theory of special relativity. The first reasonable explanation

came from Lorentz and from FitzGerald, who independently suggested that moving bodies contract in

the direction of motion by the factor g in our analysis above. Poincaré commented that this was a

conspiracy of nature which made it impossible to detect an ether wind by any experiment! The null

result of the Michelson–Morley experiment is of course now seen to be entirely in accordance with

the special theory of relativity, in which the velocity of light is invariant between any pair of frames of

reference in uniform relative motion.

9.6 Detecting Gravitational Waves by Interferometry

Although the existence of gravitational waves has been demonstrated by the orbital decay in a binary

pulsar system that is consistent with loss of radiated gravitational energy, their direct detection on

Earth is extremely difficult. A detectable gravitational wave might be radiated from a catastrophic

event such as the coalescence of a binary pair of stars, but the amplitude at the Earth would

correspond to a transient or low-frequency change in length scale by a factor of only 10�21 or less.

Gravitational wave detectors attempt to obtain such a sensitivity by using a laser interferometer

shown diagrammatically in Plate 3.*

*Plate 3 is located in the colour plate section, after page 246.
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The Michelson interferometer used in the detector compares the length of the two arms,

which are typically each about 1 kilometre long. The distant mirrors are mounted on large

suspended masses, which will move differentially depending on the direction of the gravitational

waves. There are (only!) 3 � 109 wavelengths of visible light (wavelength 600 nm) in a

double journey along one beam, so the requirement is to measure a fringe shift of 3 � 10�12

fringes! Obviously the Fabry–Pérot technique must be employed, so obtaining very sharp fringes,

and a very stable and high-powered laser must be used to allow the positions of the edges of

the fringe profile to be measured with great accuracy. The achievement of a positive detection

must be rated as one of the greatest challenges in the measurement of lengths by optical

interferometry.

9.7 The Sagnac Ring Interferometer

In 1913 Sagnac2 constructed an interferometer in which the two beams follow the same optical path

but in opposite directions (Figure 9.8a). The ring may have three or four mirrors; as in the

interferometers described earlier in this chapter, a small angular misalignment of any of them will

produce a parallel fringe pattern. The Sagnac interferometer can be used to detect rotation about an

axis perpendicular to the ring, observed as a shift of the fringe pattern. In such a rotation one optical

path is effectively shortened in comparison with the other. (Special relativity in no way suggests that

rotation cannot be detected, in contrast to the uniform linear velocity which was the objective of the

Michelson–Morley experiment.)

As we shall describe in the next section, a modern version of the Sagnac interferometer uses

glass fibres to guide light round a circular path, (Fig. 9.8b). Long lengths of fibre can be used, so

that light makes many circuits in both directions before being recombined in a single detector.

We analyse this circular version, considering a single loop with radius R rotating with angular

velocity �.

For a non-rotating loop light completes a circuit in time t ¼ 2pR=u, where u ¼ c=n is the velocity

of light in the fibre. The velocity u0 observed in the laboratory frame, when the fibre moves with

velocity v is found from the relativistic law of velocity addition, which gives

u0 ¼ c

n
þ v

� �.
1 þ v

nc

� �
:

For v � c this reduces to3

u0 ¼ c

n
þ v 1 � 1

n2

� �
:

2G. Sagnac, Comptes Rendus, 157, 708, 1913; Journal de Physique, 4, ser. 5, 177, 1914.
3The factor 1 � 1=n2ð Þ was introduced by Fresnel as a partial dragging of the ether by a moving-material

medium, to account for Fizeau’s measurements of the velocity of light in water flowing along a tubular path

(H. Fizeau, Comptes Rendus, 33, 349, 1851). When special relativity did away with the ether, his explanation

became untenable.
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Setting v ¼ ��R, the light moving with the rotation travels faster, and that opposite to the rotation

slower, according to

u� ¼ c=nþ vð1 � 1=n2Þ ¼ c=n� �Rð1 � 1=n2Þ: ð9:7Þ

The ring rotates during the transit times tþ; t� round the circuit giving an extra path �Rt�. The two

transit times t� then satisfy uU�t� ¼ 2pR� �Rt�, which can be solved for the times to give

t� ¼ 2pR
ðu� � �RÞ ¼

2pR
ðc=n� �R=n2Þ : ð9:8Þ

The difference in arrival times is

�t ¼ tþ � t� ¼ 4p�R2

½c2 � ð�R=nÞ2�
: ð9:9Þ

M

MM

S

(a)

Detector

Beam splitter

Laser

Optical fibre
loop

(b)

Figure 9.8 The Sagnac ring interferometer: (a) in the original four-mirror version light traverses the circuit in
opposite directions, reflected by the mirrors M, and the two rays recombine at the beam splitter S; (b) the optical
fiber version
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In practice, R2�2 � c2, and

�t ¼ 4pR2�

c2
¼ 4A�

c2
; ð9:10Þ

where A is the area of the ring. This time difference appears as a shift of �N fringes in the

interference pattern at the detector, where

�N ¼ c�t

l
¼ 4A�

cl
; ð9:11Þ

where, to adequate accuracy, l is the wavelength inside a fibre at rest.

Note that the fringe shift is directly proportional to the area A of the ring. This is generally true for

any shape (see Problem 9.2) including the square in Figure 9.9(a).

The ring interferometer gives a direct measure of the rate of rotation about the axis of the ring,

since the displacement of the fringe pattern is proportional to �. In 1925 Michelson and Gale4 used

such a system to measure the rate of rotation of the Earth, so demonstrating the contrast between the

detectability of linear and rotational motion in special relativity. (See Problem 9.3.)

9.8 Optical Fibres in Interferometers

In the twin beam interferometers which we have described so far, two light beams from a single

source are recombined after travelling different paths in air or blocks of glass. We saw in Chapter 6

that light can be guided down long lengths of glass fibre with very little loss, so that some remarkably

simple and stable interferometers can be constructed using long lengths of glass fibre. Light from a

compact semiconductor laser (Chapter 17) can be split between two fibre paths, and recombined in a

simple diode detector (Chapter 20). As in the original Rayleigh interferometer, the sum is dependent

on the relative phase of the two beams, allowing measurement of differences in length or refractive

index and their dependence on other parameters in the two light paths.

Figure 9.9 shows a basic system in which light from a laser is split between two fibre paths, usually

of nearly the same length, and recombined in a detector. The relative phase is detected by

incorporating a modulator, which periodically reverses the phase in one arm; the detector output is

then observed to be modulated at the switch frequency, and the modulation depth depends on the

phase difference between the two beams. The output is selectively amplified at the switch frequency.

This is the fibre equivalent of the Mach–Zehnder interferometer. It may be adapted for measurements

of any parameter which affects the phase path differently in the two arms, such as temperature

differences, or mechanical strain.

The Sagnac ring interferometer has been developed into a useful gyroscope, one form of which uses a

fibre optic ring as in Figure 9.8(b). Although a long fibre, making a large number of turns, can be used, the

phase differences to be measured are small, as we have seen for the Michelson–Gale experiment.

For example, consider the measurement of the rotation of the Earth (15� h�1). For a ring with

R ¼ 0:2 m, made of 1000 turns of optical fibre and operating with an He–Ne laser at 632.8 nm, the

phase shift will be 1:2 � 10�3 radians. (This can be measured by inverting the ring, an expedient

which was not available in the Michelson–Gale experiment.)

4A. A. Michelson and H. G. Gale, The Astrophysical Journal, 61, 140, 1925.
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9.9 The Ring Laser Gyroscope

In another form of the Sagnac gyroscope,5 the ring laser gyroscope, the laser source is contained

within the ring, which acts as a laser cavity (see Chapter 15) producing clockwise and anticlockwise

travelling laser waves. The rotation of the ring leads to a difference between the two resonant laser

frequencies, which is observable as a beat frequency.

The resonance condition in a ring laser is that the total round-trip distance L must be an integral

number of wavelengths, L ¼ ml.6 The optical path in a non-rotating ring is the total perimeter length

L, so that the resonant frequency n of the mth mode is nm ¼ mc=L. In the rotating ring the optical path

for the two directions changes by ��L, and the resulting beat frequency �n between the two

oscillations is given by

�n=n ¼ �L=L ¼ �t=tR ð9:12Þ

where �t ¼ 4A�=c2, as in equation (9.10), and tR ¼ L=c is the time for light to travel round the ring.

Note that the beat frequency �n ¼ ð4A=lL�Þ is proportional to A=L, indicating that the sensitivity is

proportional to the size of the ring.

The measurement of a frequency shift greatly increases the sensitivity of the ring laser gyroscope

compared with the passive Sagnac or fibre optic ring, where the light source is external to the ring and

rotation is measured as a phase shift.

For an equilateral triangular ring with each side of 20 cm (giving A ¼ 0:017 m2) and operating with

an He–Ne laser at 632.8 nm, a rotation of 15� h�1 or 7:3 � 10�5 rad s�1 (equivalent to the Earth’s
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Figure 9.9 Optical fibre interferometer

5See R. Anderson et al., ‘‘Sagnac effect: A century of Earth-rotated interferometers’’, American Journal of

Physics, 62, 975, 1994.
6The ring resonator differs from the linear resonator (Chapter 15) in that the laser radiation in the ring resonator is

a travelling wave, and the electric field distribution must be reproduced after each transit of the ring. In a linear

cavity, length L, the resonance is a standing wave, for which Lm ¼ ml=2.
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rotation) gives a frequency difference �n ¼ 8:8 Hz. This frequency difference can readily be

measured as a beat frequency using the heterodyne technique described in Section 12.10. The ring

laser gyroscope is a highly sensitive instrument; in a large-scale version measurements can be made

to an accuracy of ��=� 	 10�8.

For frequency stability the ring laser gyroscope is constructed within a block of low-expansion

glass (e.g. the glass ceramic Zerodur, which has near-zero linear expansion coefficient at 300 K). The

block is drilled to accommodate the laser medium and laser beams and the mirrors which define the

ring. These mirrors represent a notable technical achievement in having not only extremely low

scatter (to avoid the clockwise and anticlockwise waves locking in frequency) but also a reflectivity

near to 99.9999%.

The ring laser gyroscope has replaced the spinning wheel gyroscope in many applications. It does

not require any moving parts and can be directly connected to a vehicle avoiding the need for

gimbals. The applications include navigation for aircraft and ships, measurement of the Earth’s

rotation and its variation, seismic and geophysics monitoring, tidal variation and in large-scale, highly

sensitive forms for fundamental tests in general relativity and gravitation.

9.10 Measuring Angular Width

Interference and diffraction theory has in previous chapters considered waves originating from an

idealized point source, or from an ideal plane wavefront. In the second part of this chapter we are

concerned with the effect on the interference fringes when the source has a finite size; in general this

reduces the visibility of the fringes. The reduction of visibility enables a measurement to be made of

the size of the source; more precisely, the measurement is of the angular spread of plane waves

entering the interferometer. The most important example of such a measurement is Michelson’s

stellar interferometer.

We first consider Young’s double source interferometer, which was introduced in Chapter 8. This is

an example of an interferometer using division of wavefront, in contrast to division of amplitude, as

discussed in Chapter 8.

Figure 9.10 shows two pinholes or slits S1, S2 illuminated by a point source of monochromatic light

L. Light from S1 and S2 spreads and overlaps in the shaded region: throughout this region there is

interference between the two sets of waves, and interference fringes would appear on a screen or

photographic plate placed anywhere in the region. (The interference fringes are said to be

non-localized, in contrast to the localized fringes seen in thin films which we discussed in

Chapter 8.) We must distinguish between the effects of an extended, rather than a point, source

and the effect of slits with a finite width. The same arguments will apply to many related types of

interferometer which involve two overlapping light beams from a single small source. Fresnel used

L
S1

S2

Figure 9.10 Young’s double slit. Overlapping beams from two slits, S1, S2, illuminated by the same source
L. Interference occurs in the whole of the shaded area
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the thin biprism of Figure 9.11(a) and the nearly coplanar mirrors of Figure 9.11(b). A particularly

simple arrangement is Lloyd’s mirror (Figure 9.11(c); here the two sources are the slit S1 and its

image S2). An interesting feature of Lloyd’s mirror is that the light reflected at grazing incidence to

form S2 suffers a phase reversal at reflection (see Chapter 5), so that the interference fringes are

exactly out of step with those of the double slit.

Similar arrangements can be devised for the much longer wavelength radio waves. A classic

example is the equivalent of Lloyd’s mirror (Figure 9.12(a)) used in early radio astronomical

observations in Sydney, Australia. Although the geometry is that of Lloyd’s mirror, the radiation

moves in the reverse direction and, in place of a slit to emit the waves, there is a receiver to detect

them. The radio telescope, mounted on a cliff overlooking the sea, received radio waves of around 1 1
2

metres wavelength (frequency 200 MHz) from the Sun and other celestial radio sources as they rose

above the horizon. Both direct and reflected radio waves were received; as the Sun rises the path

difference between them changes and produces a set of interference fringes. A typical trace of the

interference fringes is shown in Figure 9.12(b); this was recorded at a time of strong and variable

radio emission from above a sunspot (see Problem 9.4).

9.11 The Effect of Slit Width

So far each slit in Young’s experiment has been supposed to be the source of a uniform cylindrical

wave, which for an ideal narrow slit covers 180�. In practice each slit may be many wavelengths

wide, and as we will see in Chapter 10 light emerges from each slit only over a restricted angle. The

simplest way to think of what happens is to notice in Figure 9.10 that fringes cannot be observed in

any particular direction y unless each slit, acting as a diffracting aperture, sends some light that way.

Each slit contributes according to its own diffraction pattern, while the relative phase of the two

S1

S2

S1

M1

M2

M

S1

S2

S2

P (a)

(b)

(c)

Figure 9.11 (a) Fresnel’s biprism; (b) Fresnel’s double mirror; (c) Lloyd’s mirror. In each arrangement twin
beams from the same source overlap in the shaded area, appearing to diverge from the twin sources S1, S2
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contributions is ð2pd=lÞ sin y where d is the spacing of the slits. Young’s fringes are then observed

within the intensity envelope of the diffraction pattern of a single slit, as shown in Figure 9.13.

We have seen in Section 8.2 that for two thin slits (width w � l) separated by distance d, the

amplitude for interference between them is proportional to a cosine function, or AIðsin yÞ ¼
cosðpd sin y=lÞ, where we normalize to unity on-axis. When the slits are thick, the overall amplitude

Aðsin yÞ equals this cosine function modulated by an additional factor due to diffraction by either slit:

Aðsin yÞ ¼ AIðsin yÞADðsin yÞ. In Chapter 10, we shall show that the diffraction pattern takes the form

(a)

h

h

q

(b)

Sun’s elevation (centre of disk)

0°

05h10m 05h20m 05h30m 05h40m 05h50m 06h00m 06h10m 06h20m 06h30m

2° 4° 6° 8° 10°

Cliff

Receiver

Sea surface

Figure 9.12 Lloyd’s mirror in radio astronomy. (a) The radio telescope receives radio waves both directly and
indirectly from the sea. (b) The recorded radiation from the Sun as it rises above the horizon. The interference
fringes are disturbed by refraction near the horizon, and by solar outbursts (L.L. McCready, J.L. Pawsey and Ruby
Payne-Scott. Proc. Royal Soc. A190, 357, 1947)

Intensity

sinq2l /dl /dl /d–2l /d 0

Figure 9.13 Young’s fringes with slits of finite width w and separation d. The broken envelope of the fringes is
the diffraction pattern of each slit and would reach its first zero at �l=w
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of a sinc function

ADðsin yÞ ¼ sinðpw sin y=lÞ
ðpw sin y=lÞ : ð9:13Þ

Using the notation l ¼ sin y, the overall amplitude goes as

AðlÞ ¼ sinðpwl=lÞ
ðpwl=lÞ cosðpdl=lÞ: ð9:14Þ

Given that d is the centre-to-centre slit separation, the width w satisfies w 
 d because, for w > d, the

two slits would overlap.

Example. Verify that equation (9.11) makes sense for the limiting values of slit width: (i) w ¼ 0, and

(ii) w ¼ d.

Solution. (i) In the limit w ¼ 0, we can show that the sinc function goes to unity because, for small x,

sinðxÞ=x ¼ x=x ¼ 1. So Aðsin yÞ correctly reduces to the cosine function of two thin slits. (ii) For

w ¼ d, the two slits merge into a single slit of width 2w. Sure enough, using the identity

sinð2xÞ ¼ 2 sinðxÞ cosðxÞ, the amplitude reduces to

Aðsin yÞ ¼ sinð2pw sin y=lÞ
ð2pw sin y=lÞ ;

the diffraction pattern for a slit of width 2w.

The same result may be reached via the convolution theorem in Fourier transforms (Chapter 4). In

this equivalent approach the twin slits are described as the convolution of a top-hat function, width w,

with a pair of delta functions, spaced d apart; the Fourier transform, which is the angular distribution

of diffracted plane waves, is the product of the two separate transforms.

9.12 Source Size and Coherence

So far the wavefronts leaving the two apertures have been considered as parts of a single plane

monochromatic wave. No wavefront is ideally plane and no wave is perfectly monochromatic,

although laser light can approach the ideal very nearly. We now investigate interference between non-

ideal wavefronts, such as those obtained from a source of finite size.

In any ordinary light source, such as an incandescent filament or a sodium lamp, the output of the

lamp is made up of the sum of the light waves produced by a very large number of individual atoms.

Their phases vary randomly so that, on average, cross-terms vanish and their time-averaged

intensities add. Light derived from different parts of the source cannot interfere. Interference is

only observable if the two interfering beams are both derived from the same region of the source,

when the two beams are said to be mutually coherent.7 Two beams derived from any other part of the

7The concept of coherence is discussed in more detail in Chapter 13.
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source may also interfere, but the interference patterns from different parts of the source may not

coincide in time and space. But if the interference patterns made by each component of an extended

source are identical, then they add to produce the same pattern as that from a point source.

Let us look at the problem in the case of Young’s slits. Suppose that the plane wave we have so far

considered is replaced by the wavefront from a source S0 S00 of finite width ws at a large distance r

from the slits, as in Figure 9.14. Each component of the source produces interference fringes with the

same spacing, but the position of the interference fringes depends on the relative phase of the wave as

it arrives at the slits. This relative phase depends on the difference in distance between the source and

the two slits; if this difference is nearly the same for all components, the fringe patterns will coincide

and add to give the normal point source fringe pattern.

The interference patterns will coincide nearly enough to give a fringe pattern with high visibility if

the relative path length from each end of the source is the same within a small fraction of a

wavelength. Seen from the slits this means that the directions of S0 and S00 must be the same within an

angle of l=d. The waves at A and B can then again be regarded as coherent, as they were when the

light came from a single point source. This gives us a condition for coherence between the light at A

and B:

ws

r
� l

d
: ð9:15Þ

A perfect point source would have the property that all pairs of points on its wavefront would be

coherent. The important result of equation (9.15) gives the condition under which a finite source may

be regarded as a point source as far as a particular diffracting system is concerned. Looking back at

the source from the diffracting system, equation (9.15) may be restated as

angle subtended by source � l /(linear size of diffracting system).

9.13 Michelson’s Stellar Interferometer

In the previous section it was shown that one condition for fringes to be produced by Young’s slits

was equation (9.15), a restriction on the angular size of the source seen from the slits. This suggests

that such a system might be used to measure the angular size of a source by altering the slit

separation until fringes could not be seen. This is the principle of Michelson’s stellar interferom-

eter. Some modification of the simple Young system is needed to make an interferometer capable of

d

r

B

S′

WS

S″

A

Figure 9.14 A source of finite size illuminating Young’s slits. Fringes of high visibility can only be seen if the
path difference AS-BS only changes by a small fraction of a wavelength for all positions of S from S0 to S00
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producing fringes by the light of a star; this concerns the method of combining the light that comes

through the two slits. In Young’s system diffraction at the slits is relied upon to make part of the

emergent light from each slit reach the same region so that interference can take place. This means

that the slits have to be narrow. In Michelson’s system (Figure 9.15) the slits are replaced by two

large plane mirrors M1 and M2 a distance dM apart. Each reflects light inwards to two further

inclined mirrors M3 and M4. These reflect two parallel beams of light into a telescope objective

(which may be reflecting or refracting). Each beam forms an image of the star in the focal plane F,

and fringes are seen crossing the diffraction disc of the combined image. The two apertures S1 and

S2 in front of the objective, which limit the size of the beams, act like Young’s double slits with a

spacing dS.

Suppose first that a star is observed which has so small an angular diameter f0 that the inequality

(9.15) is satisfied, i.e. f0 � l=dM. Then the wavefronts falling on M1 and M2 are coherent and hence

(if the mirrors are perfectly adjusted) S1 and S2 are illuminated by coherent wavefronts. In the focal

plane F the interference pattern of the slits is observed; it consists of intensity fringes with a spacing

ðl=dSÞf , where f is the focal length of the telescope. Notice that the fringe spacing is independent of

the separation dM of the outer mirrors M1 and M2. The extent of the area over which fringes can be

observed is limited by diffraction at the individual apertures, width wS, and therefore, recalling the

diffraction envelope of Figure 9.13, is of the order of ðl=wSÞf ; this is the approximate width of the

central maximum of the diffraction pattern of each aperture.

Now consider the effect of observing a star of finite angular diameter f0. Suppose it is to be divided

up into very narrow strips of width df each of which satisfies the condition

df � l
dM

: ð9:16Þ

Then each such strip produces a set of fringes, but each set is non-coherent with any other set,

originating as it does from a different part of the source. These sets of fringes then add
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Figure 9.15 Michelson’s stellar interferometer. Light from parts of the star’s wavefront dM apart is made to
interfere in the focal plane of the telescope. The visibility of the resultant fringes as dM is varied allows some
estimate to be made of the star’s angular diameter
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non-coherently; that is to say, their intensities add. Each elementary strip on the star produces its own

fringe system which overlaps the others to a greater or lesser degree according to the star’s angular

diameter. Note that there is no interference between fringes from different parts of the star (which are

non-coherent), only addition of intensity. Three cases can easily be distinguished, and are illustrated

in Figure 9.16, where only the central portion of the pattern is considered, so that the sinc=c term in

the single slit pattern which gradually modulates the cosine fringes is usually taken as unity. The sets

of cosine-squared fringes from different parts of the star will be shifted sideways in y, the total shift in

y being f0f , as is easily shown by geometrical considerations. An angular movement f amounting to

l=dM causes a difference of path of one wavelength for the light going by the two routes. Examining

the three cases in turn shows that more or less blurring of the fringes occurs.

1. f0 � l=dM. The condition (9.15) is satisfied and the transverse shift of the fringes from different

parts of the source is slight. Completely dark minima will be seen.

2. f0 ’ l=dM. The transverse shift of the fringes from different parts of the source is the same order

as their spacing l=dS. There will be no completely dark minima, but a sinusoidal variation of the

intensity will be seen.

3. f0 � l=dM. The overlapping of the sets of fringes from different parts of the source is complete;

no variation of the intensity will be seen.

The fringe visibility VðdMÞ, given by

V ¼ Imax � Imin

Imax þ Imin

; ð9:17Þ

is used in the measurement of source diameter and the brightness distribution across the source. The

maximum and minimum intensities used here are illustrated in Figure 9.16. To see how V varies

I

Imax Imax

Imin

f0 << l /dM f0 ≈ l /dM f0 >> l /dM

Figure 9.16 Fringes in three cases with the Michelson interferometer. The angular diameter of the observed
star is f0
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quantitatively with dM it is necessary to define the brightness distribution of the source as a function

of f. Let this be BðfÞ, and let BðfÞ be symmetrical about the centre of the source. Then each

elementary strip of the source, df wide and at a small angle f from the centre of the source, produces

a fringe system with intensity proportional to BðfÞ and displaced by angle f from the centre of the

fringe system. The intensity of a fringe maximum now becomes the integral

Imax ¼ a

Z
source

BðfÞ cos2 pdMf
l

df

¼ a

2

Z
source

BðfÞ 1 þ cos
2pdMf

l

� �
df

ð9:18Þ

where a is a constant. Similarly the minimum intensity becomes

Imin ¼ a

Z
source

Bf 1 � cos2 pdMf
l

� �
df

¼ a

2

Z
source

BðfÞ 1 � cos
2pdMf

l

� �
df:

ð9:19Þ

The fringe visibility is therefore

V ¼
R
BðfÞ cosð2pdMf=lÞdfR

BðfÞdf
: ð9:20Þ

For a source of uniform brightness BðfÞ over an angular width f0

V ¼ sinðpdMf0=lÞ
pdMf0=l

: ð9:21Þ

This is a sinc function8 similar to that representing the Fraunhofer diffraction pattern of a single slit.

There is in fact a close relation between the fringe visibility function equation (9.20) and the

diffraction formula equation (7.20), which can be traced through the fact that the numerator of

equation (9.20) is the cosine Fourier transform of the brightness distribution across the source.

Equation (9.21) may be taken to represent the variation of visibility with f0 at a fixed spacing dM;

alternatively if dM can be varied the fall of visibility can be used to measure f0 for a given star.

Michelson in the early 1920s set up such an interferometer at Mount Wilson on the 100 inch

diameter telescope, in which the maximum spacing of the outer mirrors was about 6 metres. The

angular separation of the interference fringes at this spacing was 10�7 radians, or 0.02 seconds of arc.

Even this small angle is large compared with the angular diameters of most nearby stars, and thermal

instabilities in the air paths of the interferometer did not allow precise measurements of fringe

visibility. Nevertheless the diameters of a small number of red giants could be measured. The first of

these was Betelgeuse, which was found to have an angular diameter of 0.047 seconds of arc. From

8According to its definition, equation (9.17), V is always non-negative, but equation (9.21) violates this for

certain values of f0. This reflects reversed identities of Imin and Imax in equations (9.18) and (9.19). The

correction is to replace sinðpdMf0lÞ in equation (9.21) by its absolute value. See Chapter 13 for a further

discussion.
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this measurement and the distance (known from measurements of parallax) the linear size turned out

to be 300 times that of the Sun, and large enough to enclose the Earth’s orbit! Only a few such stars

could be measured with the 6 m spacing. Michelson attempted to use larger spacings, but thermal

instabilities in the separated light paths made the interference fringes fluctuate rapidly and impossible

to observe. Larger spacings can, however, be used if a detector with sufficiently rapid response is

used; interferometers using pairs of large optical telescopes separated by some tens of metres are now

in regular use.

9.14 Very Long Baseline Interferometry

Interferometers with very much longer separations can be used at radio wavelengths, where the

effects of random refraction in the atmosphere are negligible. Radio telescopes up to 200 km apart in

the MERLIN array centred on Jodrell Bank were connected by radio links in a system closely

analogous to Michelson’s stellar interferometer. (The same fringe spacing of 0.02 arcseconds used by

Michelson is obtained at 200 km spacing using a radio wavelength of 2 centimetres.)

Optical fibres are now used for direct connections between the separate radio telescopes over long

baselines, but radio interferometry is routinely used even where direct connection is impossible, using

baselines extending over some thousands of kilometres. Instead of directly transmitting the radio signals

to a common receiver, they are recorded on magnetic tapes which are subsequently transported and

replayed into the common receiver. The relative phase of the signals must be preserved in this

operation; this is achieved by using very stable oscillators as phase references at the separated receivers.

Very long baseline interferometry (VLBI) with a baseline of 1000 km and a wavelength of 1 centimetre

has a fringe spacing of 2 milliarcseconds, giving a very much greater angular resolution than any optical

interferometer. Surprisingly, there are some distant and powerful radio sources, the quasars, which

demand still longer baselines; this has been achieved by using a radio telescope in an orbiting satellite

as one element of a VLBI system, giving baselines up to 6000 kilometres.

9.15 The Intensity Interferometer

The difficulties of achieving stable interference fringes in Michelson’s stellar interferometer were

overcome in a remarkable way by the intensity interferometer of R. Hanbury Brown and R.Q. Twiss.

This was originally conceived by Hanbury Brown at Jodrell Bank for use at radio wavelengths.

Longer baselines of radio versions of Michelson’s interferometer were required so as to increase their

resolving power, but the links which conveyed the radio frequency signals to the central station where

they could interfere and produce fringes did not have the necessary phase stability.

Interference between two radio signals can be observed, as in optical interferometers, by detecting

the sum of the two signals, producing the product ðA1 þ A2Þ2 ¼ A2
1 þ A2

2 þ 2A1A2; averaged over

time the first two terms give the intensities of the separate signals, and the product A1A2 is the

interference term, which will depend on their relative phase as well as their amplitude. Alternatively

in the radio domain it is possible to multiply two electronic signals directly in a correlator, to give the

product A1A2. In either case the interference between the two signals is measured as a correlation

between them (see Chapter 13).

Hanbury Brown’s suggestion was that instead of conveying back the amplitude of the radio waves

received at each end from the radio source, the intensity only need be conveyed. This suggestion may
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seem ridiculous, as the intensity does not depend on phase; however, the signals from radio sources,

like other naturally occurring radio signals, are characteristically noisy and have fluctuations in

intensity. According to Hanbury Brown, these fluctuations in intensity would correlate if the two

stations were close, but as the baseline was increased the correlation would fall off in a way that

would allow the angular diameter of the source to be determined. We discuss this concept in more

detail in Chapter 13.

These two radio versions of Michelson’s interferometer are shown in Figure 9.17. The easing of the

problem of conveying the information to the central station this allowed was enormous. The radio

frequencies occupying a bandwidth of several megahertz must be transmitted in a way that preserves

phase; the intensity fluctuations are instead at the low frequencies normally carried by telephone

lines, and can be transmitted without loss over large distances. The system was used first by R. C.

Jennison and M. K. das Gupta at Jodrell Bank Radio Observatory in 1951 in a measurement of the

angular diameter of the second most powerful radio source in the sky, that in Cygnus. Encouraged by

its success at radio wavelengths, Hanbury Brown then proceeded to apply the same technique at

optical wavelengths. Here there seemed to be a fundamental question: could an optical photon

detector be used to measure correlation between two light beams? An initial laboratory-scale

demonstration9 using a mercury lamp showed that it could, so that the optical stellar interferometer

should work.

9R. Hanbury Brown and R.Q. Twiss, ‘‘Correlations between photons in two coherent beams of light,’’ Nature,

127, 27, 1956.
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Figure 9.17 Radio interferometers. (a) A conventional form similar to Michelson’s. The chief difficulty is in
conveying the amplitudes A1 and A2 from the radio telescopes T1 and T2 which may be intercontinental distances
apart. (b) The intensity interferometer where the much more easily handled intensity is brought in, the
amplitude being squared (in detection) at each end
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The equipment for the new intensity interferometer consisted of two searchlight mirrors focussing

the light of the observed star onto the cathodes of two photomultipliers. The observed fluctuations in

current were then correlated in an electronic multiplying circuit. The equipment was used to observe

Sirius on every possible night in the winter of 1955–6, when a total of only 18 hours observing was

achieved. As the two ends of the interferometer were moved apart to a final spacing of over 9 m there

indeed was a fall-off in correlation, giving an angular diameter for Sirius of 0:0069 � 0:0004 seconds

of arc.

This result and the laboratory experiments in intensity interferometry that had preceded it started a

storm of controversy amongst theoretical physicists. The conventional explanation of the intensity

fluctuations was that the numbers of photons arriving at each photocathode had statistical variations;

how could the separate photons caught by searchlight mirrors several metres apart have correlated

fluctuations? This is of course a problem that applies to all interferometers, but it was brought into

sharp focus by the measurement of intensity at the two telescopes, which was related more obviously

to a flux of photons than in the more conventional interferometers.

The work of Hanbury Brown and Twiss epitomizes the dual character of light: a wave nature

(which makes interferometers work) and a quantum nature (which is clearly demonstrated in the

detection of individual photons). The correct approach to the problem is to apply wave theory to the

propagation, diffraction and interference of the light waves, and quantum theory to the interaction of

the light waves with the detectors. We consider this problem further in Chapter 13. The wave theory

shows what correlation exists between the waves at the detectors, while the quantum theory shows

how this correlation may become masked by a statistical ‘photon noise’.

Moving to clearer skies than those of Jodrell Bank in Cheshire, England, Hanbury Brown set up at

Narrabri in Australia a very large version of his intensity interferometer. The advantage over the

Michelson technique was the measurement of correlation over very much larger baselines, giving a

crucially important improvement in angular resolution. With the Narrabri interferometer, Hanbury

Brown measured the diameters of several hundred of the brightest stars, the first direct measurement

of the diameters of any stars smaller than the red giants. This was also the last use of intensity

interferometry for measuring stellar diameters; the technique has been overtaken by developments in

phase stable Michelson interferometers connecting large conventional optical telescopes, notably at

the European Southern Observatory in Chile, and on Hawaii where the two Keck telescopes operate

as a Michelson pair.

Problems 9.1 Numerical Examples
(i) In a Michelson interferometer used to measure the wavelength of monochromatic light, 185 fringes crossed

the field of view when the mirror was moved by 50 mm. What was the wavelength of the light?

(ii) A simple double slit with separation 1 mm is held immediately in front of the eye, and a distant sodium street

lamp is observed. If the lamp is 10 cm across, how far away must it be for clear interference fringes to be observed?

(iii) An etalon used as a length standard known to be near 5 mm, within one or two light wavelengths, was

measured in terms of three wavelengths of cadmium light. Only the fractional parts of the fringe numbers were

known, as follows:

Wavelength (nm) Fraction

479.992 0.15

508.582 0.495

643.847 0.80

By trial and error, find the whole numbers of wavelengths and hence the spacing of the etalon.
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Problem 9.2
The point of this problem is to show that equations (9.10) and (9.11) for the Sagnac interferometer also apply to

any non-circular path. Suppose that: the light rays follow an arbitrary planar curve rðf� �tÞ, in polar

coordinates, where the argument f� �t indicates rigid rotation; ds is an element of arc along the fibre; and the

refractive index is n. The angle between the light path and the direction of the rotary velocity is given by

cos y ¼ rdf=ds. Relative to the inertial frame of the laboratory, the two light rays have velocities

u� ¼ c=n� �rð1 � 1=n2Þ cos y; here we have used the cosine to project the added Fresnel drag speed onto

the instantaneous direction of the light path (or fibre). (a) By generalizing the treatment of the circular case, find

the time �tþ for the co-rotating (þ) light ray to travel an arclength �s. Likewise for the counter-rotating (�)

light ray. (b) Verify that equations (9.10) and (9.11) are correct, when A is the area enclosed by the light path.

(c) In general, the apparatus could be rotated with an angular velocity vector x having components both parallel

and perpendicular to the light path. Explain why it is that only the perpendicular component, �¼ n̂ � x, is

effective in producing a fringe shift, where n̂ is the unit normal to the plane of the light path.

Problem 9.3
Michelson and Gale tested the Sagnac effect by sending two light beams of wavelength 575 nm in opposite

directions around an optical path in an evacuated pipe, forming a rectangular loop 610 � 335 m, and observed

interference fringes on the image of a slit source. The experiment was conducted at latitude 42�. Calculate the

expected fringe shift.

Problem 9.4
(a) The path difference between the two rays in the ‘‘sea interferometer’’ of Figure 9.13 can be calculated in a

manner analogous to that used for a plane-parallel plate in Section 8.4. Find an equation for the bright fringes

similar to equation (8.13). (As with the conventional Lloyd’s mirror, you may assume a 180� phase reversal for

the reflected wave.) Show that for grazing incidence (y � 1), adjacent fringes are separated by an angle

�y ¼ l=2h.

(b) Based on Figure 9.13, and with wavelength l ¼ 1:5 m, estimate the height h of the radio receiver above the

sea surface.

Problem 9.5
A Fresnel biprism (Figure 9.12(a)) with small wedge angles a and refractive index n1 is at a large distance from

a point source of light with vacuum wavelength l. It forms fringes on a screen at a distance d from the light

source. (a) Show that the spacing of the fringes is ld=a, where a ¼ 2Dðn1 � 1Þa, where D is the distance

between the source and the prism. (b) What is the spacing if the whole system is immersed in liquid with

refractive index n2?

Problem 9.6
Hanbury Brown’s development of the Michelson interferometer operated at optical wavelengths with spacings up

to 50 m between the two mirrors. Calculate the diameter of an object just resolvable by this instrument at a

distance equal to the Earth’s diameter, D ¼ 1.28� 107m.

Problem 9.7
In an experiment to demonstrate Young’s fringes, light from a source slit falls on two narrow slits 1 mm apart and

100 mm from a slit source; the fringes are observed on a screen 1 m away. The source is white light filtered so

that only the wavelength band from 480 to 520 nm is used. (a) What is the angular and linear separation of the

fringes? (b) Approximately how many fringes will be clearly visible? (c) How wide can the source slit be made

without seriously reducing the fringe visibility?

Problem 9.8
In the Rayleigh interferometer of Section 9.1, starting with both tubes at atmospheric pressure, what pressure

change will give a minimum fringe visibility due to the pair of sodium D lines at 589.0 and 589.6 nm?
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Problem 9.9
The Jamin interferometer shown in Figure 9.19 uses two parallel-sided glass plates to form separated but

identical optical paths, like the twin paths of the Rayleigh refractometer. The plates are set at y ¼ 45� to the light

path, and one is tilted by a small angle �y to produce a set of interference fringes. The plates have refractive

index n and thickness h. Find the phase difference �f between the paths at the centre of the field, using equation

(8.15) to show that

�f
�y

¼ 4ph
l

cos y sin yðn2 � sin2 yÞ�1=2: ð9:22Þ

Figure 9.19 The Jamin interferometer
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10 Diffraction

Augustin Jean Fresnel (1788–1827), . . . unable to read until the age of eight, . . .the first to construct multiple

lenses for lighthouses, . . .was enabled in the most conclusive manner to account for the phenomena of

interference in accordance with the undulatory theory.

Encyclopaedia Britannica.

Diffraction is the spreading of waves from a wavefront limited in extent, occurring either when part of

the wavefront is removed by an obstacle, or when all but a part of the wavefront is removed by an

aperture or stop. The general theory which describes diffraction at large distances is due to

Fraunhofer, and is referred to as Fraunhofer diffraction.

The Fraunhofer theory of diffraction is concerned with the angular spread of light leaving

an aperture of arbitrary shape and size; if the light then falls on a screen at a large distance, the

pattern of illumination is described adequately by this angular distribution. But if the screen is

close to the aperture, so that one might expect to see a sharp shadow at the edges, we see instead

diffraction fringes, whose analysis involves a theory introduced by Fresnel. A famous prediction of

Fresnel’s theory was that the shadow of a circular object should have a central bright spot; the

demonstration that this indeed exists was a powerful argument in establishing the wave theory of

light.

In this chapter we set out the formal distinction between Fraunhofer and Fresnel diffraction. We

start with simple examples of Fraunhofer diffraction which can be understood either intuitively or by

using the phasor ideas and constructions of Chapter 2. We shall find that this simple approach leads to

a general theory which uses Fourier analysis to analyse diffraction at any aperture. We then show how

the diffraction fringes at the edge of a geometric shadow may be analysed using integrals introduced

by Fresnel rather than the Fourier integrals appropriate to Fraunhofer diffraction.

10.1 Diffraction at a Single Slit

The simplest case of Fraunhofer diffraction is for a single slit, width w, illuminated by a plane

wavefront with uniform amplitude. The slit is perpendicular to the paper in Figure 10.1, so we take as

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



our basic element a strip of width dy, small compared with the wavelength. The diffraction pattern is

observed at a large distance from the slit. Then each strip contributes an equal amplitude proportional

to dy to the total at P, but the phase of each contribution depends on y as

fðyÞ ¼ 2py sin y
l

: ð10:1Þ

The contributions of the elementary strips can be added in the phasor diagram of Figure 10.1.

The central strip, at O, is taken as the phase reference origin, appearing as a horizontal phasor

in the diagram. Contributions from below O have phases retarded on this reference; these have

been placed on the left-hand side of the phasor diagram. Contributions from above O appear on

the right-hand side, and the diagram then becomes an arc of a circle. The resultant is a chord,

representing the amplitude AðyÞ of the resultant wave in direction y. When y ¼ 0 the phasor

diagram is a straight line, representing the maximum amplitude Að0Þ. Hence from Figure 10.1

we see that

AðyÞ
Að0Þ ¼

sinc
c

ð10:2Þ

where c ¼ po sin y=l is the phase of the component from one edge of the slit. The function

ðsincÞ=c is named sincc. The intensity correspondingly varies as

IðyÞ
Ið0Þ ¼

sinc
c

� �2

: ð10:3Þ

Using exponential functions, we can express the sum of the elementary contributions as the integral

AðyÞ ¼
Z w=2

�w=2

a expðifÞdy: ð10:4Þ

which integrates directly to give the result in equation (10.2).

Plane
wavefront

(a) (b)

O

Slit

Reference plane

To P
at infinity

Resultant A(q )

sin q

Phasor from strip
at origin

Phasor from strip 
dy at y

y-axis
y sin q

w

y
q

f (y) = 2p
l

sin qy = 

y 

pw
l

Figure 10.1 Diffraction at a slit. Each elementary strip dy contributes an equal phasor with a phase varying
linearly with y. The phasor diagram is then part of a circle, allowing the resultant to be easily calculated
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We now see the vital connection between diffraction and the Fourier transform. In Chapter 4 we

set out the Fourier transform in terms of time and frequency in equation (4.36), which we now repeat:

f ðtÞ ¼
Z 1

�1
FðnÞ expð2pintÞdn: ð10:5Þ

In terms of spatial variables x; u, where u is a spatial periodicity or an inverse length, the Fourier

transform is

f ðxÞ ¼
Z 1

�1
FðuÞ expð2pixuÞdu: ð10:6Þ

This is identical to equation (10.4) if x ¼ sin y=l and u ¼ y. The integral need not extend to infinity, as

there is no contribution from beyond the edges of the slit at y ¼ þw=2 and �w=2. The integral (10.4) is

in fact the Fourier transform of the ‘top-hat’ function, which was evaluated in Section 4.12 and found to

be proportional to the sinc function ðsincÞ=c, as also found in equation (10.2). This equality between

the Fraunhofer diffraction pattern and the Fourier transform of the aperture function is universal.

The sinc function is important in many branches of physics. By considering the behaviour of the

phasor diagram in Figure 10.2 as c changes we can easily see its main properties. At y ¼ 0; c ¼ 0

and the phasor is a straight line; sinc(0) is indeed unity. As c moves away from zero the phasor

diagram begins to curve into the arc of a circle; the resultant, the chord, shortens but remains parallel

to the contribution from the centre of the slit. Thus the amplitude decreases but the phase remains

the same. When c ¼ p, so that sin y ¼ l=w, the phasor diagram is a closed circle and the amplitude

is zero. As c increases beyond p there is again a resultant, but it is in the opposite direction;

Central maximum at q = 0

Resultant at sin q =

2w
3l

w
2l

Zero resultant at sin q =

First maximum at sin q =

Second zero at sin q =

w
l

2w
l

Figure 10.2 As the direction y of diffraction moves away from zero, the phasor, straight at y ¼ 0, curls up as
shown. Each zero corresponds to the phasor being wrapped round an integral number of times
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the amplitude is now negative, or we may say that the phase has changed by p in going through the

zero. At approximately c ¼ 3p=2 the resultant reaches its extreme negative value and then begins to

shorten as c increases. At c ¼ 2p, so that sin y ¼ 2ðl=wÞ, the resultant is again zero.

It is easy to see that this oscillatory behaviour continues, giving zeros at exactly

sin y ¼ �l=w; �2ðl=wÞ; �3ðl=wÞ, etc., corresponding to c ¼ �p; �2p; �3p, etc. The values of

c to give the maximum and minimum values, where dA/dc ¼ 0, may be found by differentiation:

dA

dc
¼ d

dc
sinc
c

� �
¼ c cosc� sinc

c2
ð10:7Þ

so that

dA

dc
¼ 0 wherec ¼ tanc: ð10:8Þ

This intrinsic equation is best solved either graphically or numerically. If n is an integer the

extremes for large n are at

c ¼ �
�
nþ 1

2

�
p: ð10:9Þ

For small values of n the maxima and minima are somewhat closer in than the values given by

equation (10.9). For example, the first extremes come at c ¼ �1:43p rather than at �1:5p. In terms

of the phasor diagram these extremes correspond to the same length of phasor being formed into a

circle by being wrapped round approximately 1 1
2
; 2 1

2
, etc., times. Similarly, the zeros are given

exactly by the same length of phasor being wrapped round 1, 2, 3, etc., times, and the central
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Figure 10.3 The amplitude function sinððpw sin yÞ=lÞ=ððpw sin yÞ=lÞ and its square, the intensity function,
for diffraction at a slit of width w
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maximum by its being straight. Remember that the change in sin y between the zeros on each side of

the central maximum is twice that between subsequent zeros. In amplitude the first subsidiary lobe is

negative and about 22% of the central lobe.

The eye or a photographic plate is directly sensitive to the intensity which is thus proportional to

the amplitude squared. The amplitude and intensity are plotted in Figure 10.3. In intensity the first

subsidiary maximum is only about 5% of the main maximum, and has fallen to 0.5% by the fourth.

10.2 The General Aperture

Having looked at a simple but important case of Fraunhofer diffraction, we now go on to make an

important generalization. We generalize in two ways: (a) by considering diffraction in two

dimensions; (b) by allowing the complex amplitude in the aperture to be non-uniform: that is to

say, it can have an arbitrary distribution of amplitude and phase.

Let the aperture be any shape in the x; y plane (Figure 10.4). Then the direction P of interest may be

specified by the unit vector k̂ ¼ ðl;m; nÞ ¼ ðk̂ � x̂; k̂ � ŷ; k̂ � ẑÞ, where the components l;m; n are called

direction cosines.1 Q is a general point in the aperture with position r ¼ ðx; y; 0Þ. The distance from Q

to the distant point P is shorter than that from O by

k̂ � r ¼ lxþ my: ð10:10Þ

Hence on account of path difference the phase of light from Q at P will be advanced by

ð2p=lÞðlxþ myÞ.
So much for the extension to two dimensions. Now let both the amplitude and phase of the

wavefront in the aperture be functions of (x; y). Mathematically we can express this by letting the

amplitude be a complex function of position, Fðx; yÞ. An element dxdy at (x; y) will then make a

z-axis

(l,m,n)

P direction

y-axis

x-axis
O

Q

Q′

y x

Figure 10.4 A general aperture in the x; y plane. The contribution from Q in the P direction specified by the
direction cosines (l;m; n) is advanced in phase compared with those from the origin by ð2p=lÞQQ0 ¼
ð2p=lÞðl x þ myÞ

1The direction cosines are the cosines of the angles between the direction they refer to and the coordinate axes.
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contribution to the amplitude at P of Fðx; yÞ dxdy, but rotated in phase by ð2p=lÞðlxþ myÞ:
Expressing the sum of all such components over the aperture by a double integral,

Aðl;mÞ ¼ C0
Z Z

Fðx; yÞ exp � 2pi

l
ðlxþ myÞ

� �
dxdy: ð10:11Þ

Be clear what this integral represents. Each element of the aperture dxdy contributes a phasor of

length Fðx; yÞ dxdy and phase given by the initial phase of Fðx; yÞ advanced by the phase due to the

path difference k � r (the minus sign in (10.11) is due to a phase reduction). The complex integral is

just a way of arriving at the resultant in the phasor diagram. Equation (10.11) allows the calculation of

the complex amplitude at a distant point P in terms of the complex amplitude Fðx; yÞ in the aperture.

The dimensions must be the same on each side, and this is taken care of by the constant C0 with

dimensions ½length��2
. For present purposes we are concerned with the form of the diffraction pattern

rather than its absolute value.

Comparison with equation (4.38) shows that equation (10.11) has the form of a Fourier transform

in two dimensions, using the pairs of transform variables x=l and l, y=l and m. The coordinates x=l
and y=l in the aperture are lengths measured in wavelengths, while l and m are sines of angles

measured from the normal to the aperture. Thus we have the important general result:

The Fraunhofer diffraction pattern in amplitude of an aperture is the Fourier transform of the complex

amplitude distribution across the aperture.

10.3 Rectangular and Circular Apertures

We can now apply the general expression of equation (10.11) to some particularly important

examples of diffracting apertures, using Fourier transforms directly. For the first three of the

following examples we need only use the one dimensional form of equation (10.11). In the following

examples, the amplitude function Fðx; yÞ within the aperture is constant in magnitude and phase. This

implies that the aperture is illuminated by a plane wave incident normally.

10.3.1 Uniformly Illuminated Single Slit

As in Section 10.1, a uniformly illuminated slit of width w is represented by an amplitude distribution

FðyÞ ¼ F0; for jyj < w=2

¼ 0; for jyj > w=2:
ð10:12Þ

The Fourier transform, i.e. the amplitude function AðyÞ, is

AðyÞ ¼ Að0Þ sinc
pw sin y

l

� �
: ð10:13Þ

The intensity distribution is the diffraction pattern shown in Figure 10.3.

10.3.2 Two Infinitesimally Narrow Slits

Young’s double slit of Section 8.2 is represented by the amplitude distribution

FðxÞ ¼ F0½dðx� d=2Þ þ dðxþ d=2Þ� ð10:14Þ
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where the narrow slits are represented by two delta functions (Section 4.14) located at ðx� d=2Þ and

ðxþ d=2Þ. The Fourier transform, i.e. the double slit interference pattern, is

AðyÞ ¼ Að0Þ cos
pd
l

sin y
� �

: ð10:15Þ

10.3.3 Two Slits with Finite Width

For slits with width w, separated by d, the results of the previous sections combine to give the

amplitude distribution

AðyÞ ¼ Að0Þ sinc
pw sin y

l

� �
cos

pd
l

sin y
� �

: ð10:16Þ

Note that this result is an example of the convolution theorem (Section 4.13); the double slit pattern is

the convolution of a top-hat function with the narrow double slit, and the resultant Fourier transform

is the product of the two individual transforms.

10.3.4 Uniformly Illuminated Rectangular Aperture

Here Fðx; yÞ ¼ F0, within the aperture sides extending from �a=2 to þa=2 and �b=2 to þb=2. The

aperture sides are aligned along the x and y axes. The diffraction pattern in terms of direction cosines l

and m is

Aðl;mÞ ¼ C0F0

Z þa=2

�a=2

Z þb=2

�b=2

exp � 2pi

l
ðlxþ myÞ

� �
dxdy: ð10:17Þ

The double integrals in equation (10.17) are separable, so

Aðl;mÞ ¼ C0F0

Z þa=2

�a=2

exp � 2pilx

l

� �
dx

Z þb=2

�b=2

exp � 2pimy

l

� �
dy: ð10:18Þ

The two integrals both give sinc functions:

Z þa=2

�a=2

exp � 2pilx

l

� �
dx ¼ � l

2pil
exp � 2pilx

l

� �� �þa=2

�a=2

¼ a
sinðpla=lÞ
pla=l

ð10:19Þ

with a similar expression for the y integral. The amplitude A(0, 0) at the centre of the pattern where

l and m are zero is C0F0 ab, so the amplitude Aðl;mÞ is given in terms of that at (0, 0) by

Aðl;mÞ ¼ Að0; 0Þ sinðpla=lÞ
pla=l

sinðpmb=lÞ
pmb=l

: ð10:20Þ

The intensity is given by the square of Aðl;mÞ. Thus the expression for the Fraunhofer diffraction

pattern of a uniformly illuminated rectangular aperture is proportional to the product of the
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expressions for the separate diffraction patterns of two crossed slits. Along the l and m axes the

subsidiary maxima have the same values as those of each single slit, since one of the product terms of

equation (10.20) is unity on each axis. Faint subsidiary maxima exist in the four quadrants. For these

both product terms are of the order of a few per cent, and the brightest of them, at approximately

ð�1:5l=a;�1:5l=bÞ, is ð0:047Þ2
or 2:2 � 10�3 of the intensity at the centre.

Physically we can see why this is so by considering the phasor diagrams shown in Figure 10.5.

Along the l axis each strip parallel to the y axis is in the same phase all over. Phasors from each of

these strips combine to give the diffraction pattern as in the single slit; the same applies to the m axis.

If we consider a general point (l;m), however, the phasor from a strip parallel to the y axis is already

bent into the arc of a circle because of the phase along the strip. The total phasor diagram is thus

constructed of phasors already bent, and hence comes out very small.

10.3.5 Uniformly Illuminated Circular Aperture

How can we now apply the general theorem (equation (10.11)) to a circular aperture? First we note

that the diffraction pattern must be circularly symmetrical. The result is simply written as the Fourier

transform

Aðl;mÞ ¼ C0F0

Z Z
exp� 2pi

l
ðlxþ myÞ

� �
dx dy: ð10:21Þ

Evaluating this integral is messy (because the limits link x and y). It is simpler to change directly to

polar coordinates (h;c) in the aperture and (w;fÞ in the diffraction pattern. Now h cosc ¼ x;

h sinc ¼ y; and an elementary area is hdhdc. In the diffraction pattern coordinates

w cosf ¼ l; w sinf ¼ m, so that w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þ m2Þ

p
¼ sin y; as usual, y is the angular deviation

from the optical axis or normal to the aperture. The amplitude for a circular aperture is now given by

Aðw;fÞ ¼ C0F0

Z a

0

Z 2p

0

hdh dc exp � 2pi

l
hw cosðc� fÞ

� �
: ð10:22Þ

The integral in equation (10.22) is only soluble analytically in terms of Bessel functions. However,

most integrals can only be solved in terms of some sort of tabulated functions; it is merely that

Overall resultant

Phaser diagram
for single y-strip

y=strip resultant

Figure 10.5 Phasor diagram for a rectangular aperture for diffraction in a direction off both l and m axes. The
diagram corresponds to a point on the central maximum close to the first minimum in the m direction, but fairly
far up the central maximum in the l direction
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Bessel’s are less familiar than, for example, the sines needed to perform the integrals of equation

(10.19). This being done, we have

Aðw;fÞ ¼ Að0; 0Þ 2J1ð2paw=lÞ
2paw=l

: ð10:23Þ

The square of the right-hand side of equation (10.23) gives the intensity pattern for Fraunhofer

diffraction at a circular aperture:

Iðw;fÞ ¼ Ið0; 0Þ 2J1ð2paw=lÞ
2paw=l

� �2

: ð10:24Þ

This famous and important result was first derived by George Airy in 1835 at about the time he

became Astronomer Royal. It is of especial importance to astronomers as it is the pattern produced in

the focal plane of an ideal telescope with a circular lens (or mirror) by a plane wavefront from a

distant star. The circular edge of the objective lens of the telescope limits the aperture, and it is the

angular width of the diffraction patterns due to two adjacent stars that determines whether or not they

can be distinguished.

Airy’s pattern in both amplitude and intensity is plotted in Figure 10.6. At first sight it looks like the

similar plots for the slit in Figure 10.3, but there are several differences. Most important, it is a ring

system, so that the plots are radial sections of a pattern possessing circular symmetry. The first zero is at

1:22l=D (where D ¼ 2a is the diameter of the aperture), compared with l=w for a slit of width w. The

zeros are not equally spaced but tend to a separation of l=D for large values of w (see Problem 10.7). The

first subsidiary maximum of intensity is lower: 1.75% compared with 4.72% for the slit.

The Airy diffraction pattern is often quoted in relation to the angular resolving power of telescopes

and similar optical instruments. If for example a double star is to be seen as two clearly

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

In
te

ns
ity

A
m

pl
itu

de

0.6

0.4

0.2

First zeroes
at 1.22 l /D

0
–4l /D –2l /D 2l /D 4l /D sin q0

Figure 10.6 The amplitude and intensity functions 2J1ððpd sin yÞ=lÞ=ðpd sin yÞ=l and its square for
diffraction at a circular aperture of diameter D. The substitutions have been made in the expression in equation
(10.23) to allow direct comparison with Figure 10.3 for a single slit
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distinguishable images, each image must be smaller than the separation between them. The resolving

power of the telescope is therefore ideally 1:22l=D, where D is the aperture; for example,

for D ¼ 2:4 m (the Hubble Space Telescope) the angular resolution in visible light is around

0.05 arcseconds. (This is usually unattainable for a comparable terrestrial telescope, because of

random refraction effects in the atmosphere.)

10.4 Fraunhofer and Fresnel Diffraction

In any diffraction problem we find the amplitude and phase of the light wave at a point by adding all

contributions by every possible path from a source to that point. The simple case of Fraunhofer

diffraction is characterized by a linear variation of the phase of contributions from elements across an

aperture. At a point close to an aperture or an obstacle the phase of these contributions will no longer

vary linearly with distance across the aperture, and quadratic terms must be introduced. This is

typical of Fresnel diffraction; the results are no longer given by Fourier transforms as in Fraunhofer

diffraction.

The general problem is illustrated in Figure 10.7. Each element of the wavefront at the aperture is

considered as the source of a secondary Huygens wavelet; the resultant amplitude and phase at any

point P are determined by summing these wavelets, as in a phasor diagram. The phase of each wavelet

is behind that of the wave at Q by an amount depending on the distance PQ and the wavelength. This

summation of Huygens’ wavelets taking account of their phase is the Huygens–Fresnel diffraction

theory; it was Fresnel who contributed the essential idea of the interference of the Huygens secondary

wavelets. Figure 10.7 shows how the distance PQ, and accordingly the phases of the wavelets, vary

according to the position of the source Q; (b) shows the linear variation typical of Fraunhofer

diffraction, and (c) shows the quadratic variation typical of Fresnel diffraction.

The transition from Fresnel to Fraunhofer diffraction is illustrated for slit diffraction in Figure 10.8.

To determine the relative phases of contributions across the aperture for a point on any plane P3

considerably beyond the distance R the linear approximation of Figure 10.7(b) is sufficient. But for a

point on the plane P1 inside the distance R, equal distances lie on a spherical surface rather than a

plane, as in Figure 10.7(c). For a point such as P3 the difference between a sphere and a plane

becomes unimportant, since if the maximum deviation between sphere and plane is less than about

l=8 it has little effect on the phasors which add to give the resultant at P3. The distance R, dividing

the two regimes, is known as the Rayleigh distance; for an aperture width d it is given by

R ¼ d2

l
: ð10:25Þ
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Figure 10.7 (a) The amplitude and phase at P may be considered as the sum of Huygens’ wavelets from points
such as Q in the aperture. In Fraunhofer diffraction the phase varies linearly across the aperture, as in (b); in
Fresnel diffraction it varies quadratically, as in (c)
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We return to this definition in Section 10.7 below.

In Section 10.9 we consider two further factors which may complicate some applications of Fresnel

diffraction theory:

1. The distances from P of elements of the aperture may vary sufficiently to have a significant effect

on wave amplitude as well as phase.

2. The line to P from different parts of the aperture may make considerably different angles with the

normal to the surface of the aperture; this inclination factor also may have a significant effect on

amplitude.

Fortunately there are two cases of particular interest which can be solved without detailed analysis of

these factors, and which are well illustrated by graphical means as well as by simplified integrals.

These are diffraction at a straight edge and at circular holes or obstacles.

10.5 Shadow Edges – Fresnel Diffraction at a Straight Edge

One of the most interesting predictions of the wave theory of light is that there should be some light

within a geometric shadow, and interference fringes just outside it. The effect, seen in the photograph

of Figure 10.9 and in the irradiance plot of Figure 10.10, is that at the geometrical edge of a shadow

the intensity is already reduced to a quarter of the undisturbed intensity, falling monotonically to zero

within the shadow. Outside the shadow the intensity increases to more than its undisturbed value and

oscillates with increasing frequency as it approaches a uniform value. These are the ‘fringes’, a name

which has been extended to many other types of diffraction and interference phenomena.

Consider the diffraction of a plane wave incident normally on a straight-edged obstacle. We shall

evaluate the contributions of wavelets from strips parallel to the edge of the obstacle to the wave at a

point P at distance s from the obstacle and on the edge of the geometric shadow. We take as phase

d

Rayleigh distance (R)

Pl
an

e 
w

av
ef

ro
nt P1

P2

P3

q = sin–1 (l / d) 

Figure 10.8 Transition from Fresnel to Fraunhofer diffraction. A portion of a plane wave W passes through a
slit, width d. Intensity distributions across the wave are shown for planes P1 (close to the slit), P2 (just inside the
Rayleigh distance) and P3 (beyond the Rayleigh distance)
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reference the phase of a wave from the closest point in the plane of the aperture. The extra path length

from a strip distant h from this point gives a phase delay of

fðhÞ ¼ 2p
l

ðs2 þ h2Þ1=2 � s
h i

� p
l
h2

s
: ð10:26Þ

Figure 10.9 Fresnel diffraction at the shadow edges of a spiral spring. (Paul Treadwell, University of Manchester)

0.25

Edge of
geometric shadow

0.78

1.34

1.0

Figure 10.10 Fresnel diffraction; irradiance distribution for a straight edge
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The approximation, in which the phase f increases as the square of h, is valid when h2 � s2. If we

divide the contributions in equal increments of phase, the corresponding increments of h decrease as h

increases. The plot of fðhÞ in Figure 10.11 is marked off at intervals of p in phase, showing the

decreasing width of zones across which the phase reverses. Zones marked off in this way at intervals

of p in phase are known as ‘half-period zones’.

We can now construct a phasor diagram made up of the contribution of infinitesimal strips to the

resultant at P. The contribution of an infinitesimal strip of width dh at h has a phase fðhÞ given by

equation (10.26) and an amplitude proportional to dh. The phasors from each contribution may

be added geometrically by adding their components along two axes x and y. Taking the x axis as

the phase reference, the phasor contributed by each strip is dxþ idy ¼ dh½expðifðhÞÞ�, so the separate

components are

dx ¼ dh cos
ph2

ls
and dy ¼ dh sin

ph2

ls
: ð10:27Þ

The x and y components of the phasor at P resulting from contributions from the origin up to any

value of h are now given by the integrals of the expressions of equation (10.27). As h increases, the tip

of the phasor traces a spiral, with the property that the angle fðhÞ that its tangent makes with the

x axis is proportional to the square of the distance along it from the origin. (It is instructive to notice

here that if fðhÞ were simply proportional to the distance along it the spiral would become a circle

through the origin with its diameter along the y axis. This is why the corresponding Fraunhofer phasor

diagrams in Figures 10.1 and 10.2 are circular!)

It is usual when plotting this spiral to do so in terms of a dimensionless variable v, which is a

distance along the spiral. It is related in the present case to the variable h by dv /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
¼ dh,

or with a convenient choice of proportionality constant equals

v ¼ h
2

ls

� �1=2

: ð10:28Þ

Henceforth in this chapter, h and v are taken as signed variables (positive or negative) with the point

of observation, P, defining the fixed value h ¼ 0. Then the coordinates x; y of any point a distance v
along the spiral are

x ¼
Z v

0

cos
pv02

2
dv0; y ¼

Z v

0

sin
pv02

2
dv0: ð10:29Þ

W

P

(a) (b)

O

h

h

f (h)
s

p 2p 3p 4p

Figure 10.11 (a) Fresnel diffraction. Portions of the wavefront W contribute to the wave at P according to their
amplitude (proportional to dh) and phase relative to the contribution from O (proportional to h2). (b) Moving
outward from the centre, the half-period zones have successive radii that crowd closer together, though their
areas remain constant
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The integrals of equations (10.29) are called Fresnel integrals, and the plot of their value as v varies is

called Cornu’s spiral, shown in Figure 10.12. The oscillations of irradiance in the fringes correspond

to the turns in the spiral, which for large v contracts to a point Zðx ¼ 1
2
; y ¼ 1

2
Þ.

The edges of the half-period zones correspond to points on the spiral where its tangent is parallel to

the x axis. The Mth such position is given by

fðhÞ ¼ Mp ¼ p
2
v2 ð10:30Þ

or

v ¼
ffiffiffiffiffiffiffi
2M

p
: ð10:31Þ

The phasor representing the wave at P, on the edge of the geometric shadow, is the resultant of the

whole spiral from the origin to Z. Now imagine removing the obstacle and opening the other half-

plane. Then the half of the plane wavefront that was covered by the obstacle can clearly be treated

similarly, and contributes another branch of the Cornu spiral in the third quadrant. The whole curve is

shown in Figure 10.12. The resultant Z0Z when there is no screen at all is clearly double the resultant

OZ with the screen in place. This explains why the irradiance at the position of the geometric shadow

is a quarter of that of the undisturbed wave.

Now, starting with the undisturbed wave, consider how the amplitude and intensity at P vary as a

half-plane is moved from infinity across the plane wave. Starting at Z0, a growing proportion of the

spiral is deleted (Figure 10.13). The resultant instead of being Z0Z is DZ. D moves round the spiral,

so the amplitude begins to show oscillations above and below its undisturbed value. Each extreme

represents the deletion of one half-turn of spiral, corresponding to a movement in by one half-period

zone. If w is the coordinate of the edge of the plane, the rate of oscillation increases as w2; as the edge

moves in the spiral gets bigger and the oscillations become larger and less rapid. The last minimum
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Figure 10.12 Cornu’s spiral
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Figure 10.13 Edge diffraction. Phasor diagrams for successive positions of a shadow edge: (a) a diffraction
minimum; (b) the first diffraction maximum; (c) inside the geometric shadow

10.5 Shadow Edges – Fresnel Diffraction at a Straight Edge 245



and the last maximum are 0.88 and 1.16 of the undisturbed wave amplitude, giving irradiances of 0.78

and 1.34 of the unobstructed irradiance, as shown in Figure 10.10. From here on the resultant moves

smoothly on, arriving at the origin at just half the amplitude and a quarter the irradiance. As w

becomes positive, the resultant becomes a short vector joining Z to a point on the spiral around Z

which rotates, shortening smoothly in length and reducing rapidly in size as P gets deeper into the

geometric shadow.

It is quite easy to observe the first bright fringe around the edge of a shadow in white light, though

of course the further ones get progressively out of step due to the large range of wavelengths. For

example, the shadow cast by the back of a chair placed half-way across a room, illuminated with a car

headlamp bulb at one side of the room, shows the bright fringe quite convincingly around its shadow

on the opposite wall. If one looks back from a position in the shadow area towards the obstacle, the

edge of the obstacle appears bright. This is the light which is diffracted into the shadow; it appears to

originate at the edge itself, and it is sometimes referred to as an ‘edge wave’.

An interesting point to notice is that while the scale of Fresnel fringes is determined by the

wavelength and the distance s from the edge to the plane on which the shadow is observed, the ratio

of the oscillations to the undisturbed irradiance is always the same. So these effects still occur even at

short X-ray wavelengths.

10.6 Diffraction of Cylindrical Wavefronts

In the previous section we analysed the diffraction of a plane wavefront at an edge. It is very easy to

extend this analysis to the diffraction of cylindrical wavefronts such as the wavefront emerging from a

slit. If the source of the wavefront is a distance r from the diffracting screen as shown in Figure 10.14,

the extra phase in the path that passes a distance h from the centre line is given by

fðhÞ ¼ 2p
l
h2 1

2s
þ 1

2r

� �
: ð10:32Þ

This is similar to equation (10.26) with the addition of the h2=2r term to take account of the curvature

of the wavefront before diffraction. The same argument can be followed through with this slightly

more complicated expression. It turns out that the Cornu spiral can be applied as before if instead of

the change of variable in equation (10.28) the substitution

v2 ¼ 2h2

l
ðr þ sÞ

rs
ð10:33Þ

S Pr
h

s

Figure 10.14 Geometry for the diffraction of cylindrical wavefronts
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is made. The same spiral can then be used with just this change of scale factor. For example, if r ¼ s

the diffraction pattern would be scaled in h by 1=
p

2 compared with the plane wave (r ¼ 1) case.

For simplicity we shall go on to discuss the Fresnel diffraction of plane waves by slits, but all the

results are easily adapted to cylindrical waves by the change of scale given by equation (10.33).

10.7 Fresnel Diffraction by Slits and Strip Obstacles

The Cornu spiral will now be seen as the phasor diagram obtained by adding the contributions at

some point of infinitesimal strips across the whole of a plane or cylindrical wavefront. If an obstacle

or a slit deletes some of the spiral, the remainder allows us easily to obtain the amplitude and phase.

From this point of view it is natural to work in terms of v as variable, always remembering that v is

related to h, the actual dimensional coordinate perpendicular to the strips, by equation (10.28) for a

plane wave or equation (10.33) for a cylindrical wave.

In the case of slits it is again conventional to think of the slit being moved past P as was done in the

case of the half-plane; the contribution of the uncovered portion of the wavefront is then represented by

a segment of the Cornu spiral with a fixed length vs. Moving the slit relative to P, the point of

observation, moves the segment along the spiral. To illustrate this Figure 10.15 shows successive

positions of a segment with length vs ¼ 1:2 moved along the spiral in unit steps. This corresponds to a

slit too narrow for the undisturbed brightness ever to be attained. As the free length of phasor moves out

from the centre – here it is almost straight – to the spiral portions, its resultant decreases monotonically

until the spiral is of small enough diameter for it to be wrapped once round between the endpoints of the

phasor. From then the resultant increases until the spiral is wrapped round 1 1
2

times, after which it again

decreases, repeating the process in a series of fringes getting smaller and smaller. This process is highly

reminiscent of the Fraunhofer diffraction at a single slit, as indeed it should be! As a glance at equation

(10.28) shows, to make vs small at a given l, we must make s, the distance from the slit to the

observation point, large, which is just the condition for Fraunhofer diffraction.

We can now see the basis of the Rayleigh criterion for the minimum distance from the slit for

Fraunhofer diffraction to apply. If the slit width covers a range vs ¼ 2 the phasor diagram is just

beginning to be seriously bent in the centre: this is evident by inspection of the Cornu spiral. Equation

(10.28) then may be used to give the distance s in terms of slit width �h and wavelength l. Then

2 ¼ �h
2

ls

� �1=2

or s ¼ 1

2

ð�hÞ2

l
ð10:34Þ

which is half the Rayleigh distance (Section 10.4) and Fresnel effects should still be appreciable.

Similarly, if vs ¼ 1, the bending of the phasor at the centre of the spiral is negligible, its resultant

being 99.4% of its unbent length, and a similar calculation shows we are at twice the Rayleigh

distance.

As vs increases the irradiance in the centre goes up, reaching the undisturbed irradiance at vs � 1:4,

and rising to 1.8 times the undisturbed irradiance at vs � 2:4. This great increase in irradiance can be

thought of as the coherent superposition of the bright fringes near each edge diffracting separately.

The general character of the diffraction from wider and wider slits will now be clear. As the fixed

length of phasor slides along the Cornu spiral there are two conditions:

1. In the geometrically bright area. The two ends of the phasor are in opposite parts of the spiral. The

irradiance is of the same order as the undisturbed irradiance but because the resultant joins the
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Figure 10.15 Fresnel diffraction by a slit. A fixed length vs ¼ 1:2 of the Cornu spiral forms phasor diagrams (a)
at the centre of the diffraction pattern, (b) and (c) at increasing distance off centre
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ends of the phasor which are independently going round different spirals, complicated beating

effects may be seen, as shown in Figure 10.16, in which vs ¼ 4.

2. In the geometrical shadow. The two ends of the phasor are on the same part of the spiral. The

irradiance is low but, because the ends of the phasor are on the same spiral, fringes are produced

having maxima if the two ends are opposite, and minima if they are close.

Between these conditions is the rapid transition through the edge of the geometric shadow, where for

a change of position of about one unit of v the edge of the phasor sweeps from one arm of the spiral to

the other.

The Cornu spiral can be used in a similar way to analyse the effect of strip obstacles. Here a limited

portion of the spiral is removed, so that if this is in the centre the two coils Z and Z0 move closer

together. In the centre of the shadow of a strip obstacle there is always some light, although it rapidly

becomes less as the strip is made wider. Similarly, as we see in the next section, the centre of the

shadow of a perfectly circular object contains a narrow spot of light; but this spot has the same

irradiance as the unobstructed light.

10.8 Spherical Waves and Circular Apertures: Half-Period Zones

This section deals with Fresnel diffraction in axially symmetrical systems, as for example along the

axis of a circular diffracting disc or hole. In the limit a large enough circular hole offers no obstacle at

all, so the case of free space propagation is also covered.

In Figure 10.17 the wave amplitude at a point P due to a point source P0 is to be calculated

by integrating all contributions originating from a spherical surface surrounding P0. The limit of

the integral will depend on the size of the diffracting aperture, whose circular edge lies on the

sphere. At distance h from the axis, the deviation from the planar wavefront of the Fraunhofer

case is measured by the distance E ¼ r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 � h2
p

� h2=2r0. (When E � l, we recover the Fraunhofer

limit.) A reference sphere radius b, centred on P, touches the surface on the axis; the phase of a

contribution from an annulus at a distance h from the axis is then given to a first approximation by

f ¼ ph2

l
1

r0 � E
þ 1

bþ E

� �

� ph2

l
1

r0

þ 1

b

� � ð10:35Þ

Irradiance

0–3 +3
vs

vs

Figure 10.16 A slit diffraction pattern in the Fresnel region. The pattern may be traced on the Cornu spiral, by
moving a segment length vs ¼ 4 by distance �v
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where we assume that E � r0; b. The area of an annulus between h and hþ dh is ds � 2phdh

(a planar approximation to the area on a sphere). Differentiating equation (10.35) gives

df ¼ 2p
l

1

r0

þ 1

b

� �
hdh: ð10:36Þ

The element of area ds is therefore proportional to df, so that the integral over the surface

is conveniently carried out in terms of f. The wave amplitude at P is then given by an integral of

the form

AðPÞ ¼ C

Z
wavefront

expð�ifÞdf ð10:37Þ

where C is a constant depending on the amplitude of the source, and on r0; b; l.

For an aperture which is a circular hole with radius r the integral giving the wave amplitude

on-axis is between 0 and

f0 ¼ p
l
r2 1

r0

þ 1

b

� �
ð10:38Þ

giving

AholeðPÞ ¼ iCfexpð�if0Þ � 1g: ð10:39Þ

The wave amplitude at P is therefore proportional to sinðf0=2Þ, and the irradiance is proportional to

sin2ðf0=2Þ. This means that if the radius of the hole is increased progressively from zero, the

irradiance at P increases until f0 reaches p, and decreases and increases cyclically thereafter. The

successive annuli opened up between these turning points are known as the Fresnel half-period zones.

The contributions making up the integral (10.37) are shown in the phasor diagram, Figure 10.18.

This is shown as an open spiral, but it should be more nearly a circle; indeed it should be exactly

a circle given the approximation we have made in neglecting distance and inclination effects

(see Problem 10.7). Ultimately these effects shrink the circle to a point at its centre, giving a resultant

amplitude for free space which is half the amplitude obtained when a single zone is exposed.

l /2

Q P

P0

r0

s

r

b

x

Figure 10.17 Fresnel’s half-period zone construction
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This discovery that opening an aperture wider can make the irradiance decrease comes as a surprise.

But our usual intuition is based on experience with incoherent light sources where a bigger hole does

indeed admit more light.

A circular disc, acting as an obstacle, requires the integral (10.37) to be carried out from a limit f0

out to infinity. The contribution from large values of f tends to zero thanks to the aforementioned

effects of inclination and distance. We model this gradual damping effect by inserting an extra factor

expð�dfÞ, where d is a small positive number. At the end of the calculation, we will let d approach

zero. Applied to a circular disc of radius f0, Equation (10.37) becomes

AdiscðP; dÞ ¼ C

Z 1

f0

exp½�ið1 � idÞf�df ¼ iC

ð1 � idÞ exp½�ið1 � idÞf�1f0

¼ �iC

ð1 � idÞ exp½�ið1 � idÞf0�:
ð10:40Þ

Letting d vanish, we obtain the on-axis amplitude behind the disc:

AdiscðPÞ ¼ �iC exp½�if0� ð10:41Þ

and the integral becomes

AðPÞ ¼ �iC expð�if0Þ: ð10:42Þ

Surprisingly, the modulus of AðPÞ is independent of f0; the irradiance at a point on the axis behind

any circular obstacle is the same as the unobstructed irradiance.

The prediction that there should be a bright spot at the centre of the shadow of a circular disc was

first made by Poisson2 on reading a dissertation by Fresnel on diffraction, submitted to the French

Figure 10.18 The spiral phasor diagram for a spherical wavefront. (The spiral form is exaggerated in this
diagram: the phasor diagram is nearly circular

2Siméon Denis Poisson (1781–1840), celebrated French mathematician. His fame was predicted by his teacher

M. Billy in a couplet due to Lafontaine:

Petit Poisson deviendra grand

Pourvu que Dieu lui prête vie.

(The little Fish will become great, while God gives him life.)
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Academy of Sciences in 1818. When the test was made, and the bright spot was found, the wave

theory of light was firmly and finally established.

A circular aperture in which alternate half-period zones are blacked out, called a zone plate, is

shown in Figure 10.19. Alternate semicircles are now removed from the phasor diagram, and a large

concentration of light appears at P. Figure 10.20 shows how the phasors from the half-period zones

add in phase. The zone plate is acting like a lens; for any given wavelength the relation between

object and image distance r0 and b conforms to a simple lens formula. An improved zone plate can be

made by reversing the phase of alternate zones instead of blacking them out; this is done by a change

in thickness of a transparent plate. As shown in Figure 10.20(c), the amplitude at the focal point is

then doubled.

The zone plate used as a lens is particularly useful at X-ray wavelengths, where there is no

transparent refracting material which can be used to make conventional lenses. It has also been used

on a minute scale in electron optics, to produce an electron lens only 0.7 mm in diameter and with a

focal length of 1 mm.3 Each transparent zone in this lens consisted of an array of holes only a few

o

Figure 10.19 Zone plates. Alternate half-period zones are either blacked out as shown above or reversed in
phase (as seen in the cross-section on right)

(c)
(d)

(a)

(b)

Figure 10.20 Phasor diagrams for (a) a circular aperture containing an odd number of half-period zones, (b) a
zone plate with three clear zones, (c) a zone plate of the same size as (b) but with phase reversal instead of
obscured zones, (d) a perfect lens

3Y. Ito, A. L. Blelock and L. M. Brown, Nature, 394, 49, 1998.
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nanometres in diameter, drilled through a thin inorganic film; there were 4000 holes altogether in the

complete lens. This astonishing achievement has a practical application: the same lens pattern can be

reproduced many times, allowing multiple beams of electrons or X-rays to be used in the fabrication

of electronic circuits on silicon chips.

10.9 Fresnel–Kirchhoff Diffraction theory

In both Fresnel and Fraunhofer theory we have assumed that a diffracted wave amplitude can be

calculated from the sum of secondary waves originating at an aperture. We have assumed also that the

wave can be represented by a scalar, so that polarization can be neglected; and we have assumed that

the amplitude distribution across an aperture is that of the undisturbed wavefront. These latter

assumptions may be improved in specific cases; for example, we know that at the edge of a slit in a

metal sheet the electric field must be perpendicular to the conducting surface, so that the parallel

component is zero near the edge of the slit. The effective width of the slit will therefore be affected by

the direction of polarization, and this will influence the angular spread of the diffraction pattern. Such

cases can be dealt with by the application of boundary conditions in determining the amplitude

distribution across the aperture. Some fundamental questions still remain, however, which were

clarified by Kirchhoff and added to the Fresnel theory.

One of the problems of the Huygens–Fresnel principle was to assign to each wavelet an inclination

factor, which would give it unit amplitude in the forward direction and zero backwards. Fresnel

assumed, incorrectly, that it was also zero at 90� to the forward direction. The inclination factor is

obtained explicitly in Kirchhoff’s analysis, which involves not only the amplitude and phase on a

diffracting surface but also their differentials along the wave normal.

A harmonic wave from a point source in a homogeneous and isotropic medium travels at the same

speed in all directions, but with an amplitude decreasing inversely with distance. At a diffracting aperture,

distance r0 from the source, the wave amplitude of this spherical wave can be written as

ðA0=r0Þ expðikr0Þ. Figure 10.21 shows a small element of the aperture at Q with area da, which is

the origin of a wave reaching a field point P at a further distance r, giving a contribution at P with the form

dA ¼ A0da
1

r0

expðikr0Þ
1

r
expðikrÞ: ð10:43Þ

The Fresnel–Kirchhoff analysis adds two further factors, an inclination factor and a change in phase,

giving the diffracted wave amplitude AðPÞ at P as the integral over the diffracting surface S

AðPÞ ¼ � ik

4p

Z
s

A0

exp½ikðr þ r0Þ�
rr0

ðcos w0 þ cos wÞda: ð10:44Þ

Inside the integral sign the exponential term determines the phase of each component from an area

da, while the amplitude is proportional to 1=r, the distance of P from the area da. The factor

ðcos w0 þ cos wÞ=2 is the inclination factor, where w0 is the angle to the normal of the incident wave at

the diffracting surface, and w is the angle to the normal at P. Outside the integral the factor �ik=4p
normalizes the amplitude and phase of AðPÞ; the factor �i ¼ expð�ip=2Þ accounts for a 90� phase

shift of the diffracted wave relative to the incident wave.

In most of the diffraction problems encountered in this chapter the surface S may be made to

coincide with a wavefront, so that the incidence angle w0 is zero; the inclination factor
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ðcos w0 þ cos wÞ=2 then becomes ð1 þ cos wÞ=2. The propagation of Huygens’ wavelets forwards but

not backwards is now clear, as the inclination factor becomes zero for w ¼ 180�. The correct factor for

w ¼ 90� is not zero, but one-half; we should point out, however, that diffraction through such a large

angle is very dependent on the boundary conditions at the edge of the aperture.

This integral may look formidably complicated, and indeed it can be so for an arbitrary shape of

diffracting aperture or obstacle. As we have seen, however, the evaluation of equation (10.44) can be

greatly simplified in many practical situations.

10.10 Babinet’s Principle

A consequence of the Kirchhoff theory, due to Babinet, concerns complementary diffracting screens.

Consider a surface S1 with some open and some opaque areas, and a complementary surface S2 in

which all the apertures are made opaque, and all the opaque regions are made open. With neither

screen in place the complex amplitude at a point beyond the screen can be regarded as A1 þ A2, the

sum of the two diffracted amplitudes from S1 and S2. If P is outside the unobstructed light beam, so

that A1 þ A2 ¼ 0, it follows that A1 ¼ �A2. If either screen diffracts light so that it reaches P, then the

complementary screen also diffracts to give exactly the same irradiance at P.

Example. When they are the same size, the circular hole and disc of Section 10.8 are complementary

apertures. Check whether they fulfil Babinet’s principle.

Solution. From equations (10.39) and (10.41) we find

AholeðPÞ þ AdiscðPÞ ¼ iC½expð�if0Þ � 1� � iC expð�if0Þ ¼ �iC: ð10:45Þ
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Figure 10.21 Fresnel–Kirchhoff theory. An aperture forms part of the surface S enclosing P
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This does not vanish because P, the point on-axis, lies within the beam of the incident plane wave.

The sum correctly equals the amplitude for unobstructed free space, or, equivalently, for a vanishingly

small disc.

Babinet’s principle applies to any situation where light is diffracted by an obstacle or aperture into

an otherwise dark region. For example, if a small obstruction is placed in a large parallel light beam,

the light diffracted out of the beam is the same as that which would be diffracted out of the beam by

an aperture of the same shape and size. Astronomical photographs often show this effect as a cross-

like diffraction pattern extending from images of bright stars: this is due to a support structure for a

secondary mirror, forming an obstructing cross in the telescope aperture. The diffraction pattern is the

same as would be obtained from crossed slits of the same dimensions in an otherwise totally obscured

telescope aperture.

10.11 The Field at the Edge of an Aperture

In the diffraction theory of this chapter, and indeed in most of the later diffraction theory, we have

assumed that the wave can be described by a scalar variable, and made no mention of polarization. It

is not usually necessary to calculate diffraction separately for each component of the polarization of

the vector wave, but we can easily see one situation where this is necessary. It concerns the

assumption, made in Section 10.3, that the diffraction of a plane wave at a slit may be calculated as if

the amplitude of the wave were uniform over the whole slit.

Suppose the diffracting slit is made of a perfectly conducting metal sheet. Then the electric field

must be zero in the sheet; immediately outside the sheet the component parallel to the slit edge must

also be zero. Only at distances greater than about one wavelength from the edge can the field reach its

full value. The wavefront passing through the slit is therefore narrower for polarization parallel to the

edge than it is for polarization perpendicular to the edge, and the width of the diffraction patterns will

correspondingly be somewhat different. This effect is only important if the scale of the diffracting

object or slit is not large compared with one wavelength.

Evidently there can be considerable complications introduced by the behaviour of the wavefront

close to a diffracting object. The full solution of such problems involves a detailed description of the

wavefront, which must accord with the boundary conditions at the edge of the object. When the wave is

described, then the diffraction pattern can be calculated either by the simple theory of this chapter, or in

more difficult cases by the full wave theory due to Kirchhoff, which we have discussed briefly in

Section 10.9. Fortunately it is often possible to proceed without the full rigour of the Kirchhoff theory.

Problem 10.1 Numerical examples

(i) AYoung’s slit experiment has two very narrow slits separated by 0.1 mm. At what angles are the first- and

second-order fringes for red and blue light (700 nm and 450 nm respectively)?

(ii) If the slits in the previous problem are each of width 0.01 mm, how many red fringes might one see

easily?

(iii) A simple demonstration of diffraction and interference can be made by scratching lines through

the emulsion of an undeveloped photographic plate, and looking through the lines at a distant

bright light with the plate held close to the eye. Find the angular breadth of the pattern given by a sodium

lamp ðl ¼ 589 nmÞ with a slit width of 0.1 mm. What will be the effect for two such slits 1 mm apart?
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(iv) What is the limiting angular resolution of the astronomical telescope with objective diameter

D1 ¼ 40 mm described in Problem 3.1? Assume light of wavelength 600 nm.

Problem 10.2
A single slit width D is made into a double slit by obscuring its centre with a progressively wider opaque strip,

leaving two slits each with width a. Draw phasor diagrams for the single slit diffraction pattern at that angle

which, prior to removal of the central strip, would have been at the edge of the main maximum and at the first

zero, and show how these are changed as the opaque strip is widened.

Sketch the diffraction and interference patterns for the single slit and double slit with opaque strip D=2 wide,

on the same scales of irradiance and angle.

Problem 10.3
Two pinholes 0.1 mm in diameter and 0.5 mm apart are illuminated from behind by a parallel beam of

monochromatic light, wavelength 500 nm. A convex lens of diameter 1 cm and focal length 1 m is placed 110 cm

from the holes. Describe the pattern formed on a screen placed (a) 1 m, (b) 11 m, from the lens.

Problem 10.4
Show that the single slit interference pattern in Figure 10.3 can be observed using a narrow line source of light

which is extended along a line parallel to the slit. What is observed when the line source is rotated in a plane

parallel to the screen containing the diffracting slit?

Problem 10.5
Estimate the smallest possible angular beam width of (i) a paraboloid radio telescope, 80 m in diameter, used at a

wavelength of 20 cm, (ii) a laser operating at a wavelength of 600 nm, with an aperture of 1 cm.

Problem 10.6
An aperture in the form of an equilateral triangle diffracts a plane monochromatic wave. The side of the triangle

is 20 wavelengths long. Find the directions of the zeros of the diffraction pattern closest to the normal.

Problem 10.7
We have seen that the irradiance pattern for a circular disc is IðyÞ ¼ 4I0½J1ðsÞ=s�2, with s ¼ 2pa sin y=l.

Standard mathematical tables show that the first four zeros of J1ðsÞ are sj ¼ 0, 3.8317, 7.0156, 10.1735 where

j ¼ 1,2,3,4. Find out what features these zeros correspond to, and give expressions for their sin y values. (Note

that the limit as s tends to zero of J1ðsÞ=s is 1
2
.)

Problem 10.8
From the asymptotic expansion for large z

J1ðzÞ ¼
sin z� cos z

ðpzÞ1=2

show that the angular distance between diffraction minima far from the axis of a circular aperture, diameter d,

when y is not small, is approximately ðl=dÞðcos yÞ�1
.

Problem 10.9
The altitude of aircraft approaching land is controlled by a ‘glide path’ in which a radio transmitter of

wavelength 90 cm forms interference fringes. The fringes are formed from a transmitter at height h above a

conducting ground plane. Find the height h for a maximum signal to be received along a path at 3� elevation from

the airfield. (This is similar to Lloyd’s mirror in Figure 9.13. Assume that the signal is strongest in the first

interference maximum.)
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Problem 10.10
An image of a narrow slit, illuminated from behind by light of wavelength 500 nm, is formed on a screen by a

convex lens of focal length 100 cm. The slit is 200 cm from the lens.

A second slit, parallel to the first, now limits the beam of light to a width of 0.5 mm. This slit is placed

successively (a) 100 cm from the screen; (b) in contact with the lens; (c) 100 cm from the first slit. What is the

width between the first zeros of the diffraction pattern in each case?

Problem 10.11
Calculate approximate values for the theoretical angular resolution of: (i) A 100 m radio telescope working at

l ¼ 5 cm. (ii) The unaided human eye, aperture 4 mm, at l ¼ 500 nm. (iii) An 8 m diameter optical telescope at

l ¼ 1 mm. (iv) An optical interferometer with 100 m baseline at l ¼ 500 nm. (v) A radio interferometer, working

at l ¼ 10 cm, with baseline 6000 km.

Problem 10.12
The beam shape of a 15 m diameter millimetre-wave telescope is to be measured from beyond the Rayleigh

distance. Calculate this distance for a wavelength of 0.5 mm.

Problem 10.13
The Cornu spiral (Figure 10.12) represents a phasor diagram giving the amplitude and phase of contributions at a

point P from strips of a plane wave at a distance s from the nearest component. When s ¼ 10000l, how large is h

(in wavelengths) for the phase of the contribution to be 5p behind that of the component at h ¼ 0? Where on the

Cornu spiral is this contribution, and what is the value of v?

Problem 10.14
Equation (10.44) gives the inclination factor of Fresnel–Kirchhoff theory. What is the fractional decrease in this

factor for the contributions in Problem 10.13 from h ¼ 0 to h ¼ 224l?

Problem 10.15
Consider the possibility of observing optical Fresnel diffraction, as in Figure 10.10, when a star is occulted by the

Moon (given the small size of the star relative to the Moon, you can ignore the curvature of the Moon and regard

it as a straight edge). Calculate for wavelength 600 nm (i) the width of the first half-wave zone at the Moon, (ii)

the angular width of a star just filling this zone. Compare these with the size of irregularities on the Moon’s

surface, and the actual angular width of bright stars. (Moon’s distance ¼ 3:76 � 105 km.)

Problem 10.16
A distant point source of light is viewed through a glass plate dusted with opaque particles. The light now

appears to have a diffuse halo about 1� across. Use Babinet’s principle to explain this and estimate the diameter

of the particles.

Problem 10.17
Compare the intensities of light focused from a point source by a zone plate and by a lens of the same diameter

and focal length. What change is made by reversing the phase of alternate zones rather than blacking them out?

Where has the remaining energy gone?

Problem 10.18
An infinite screen is made of polaroid, and divided by a straight line into two areas in which the polaroid is

oriented parallel and perpendicular to the division. Describe the diffraction pattern due to the edge when

unpolarized light is incident normally on the screen.

Problem 10.19
A shadow edge for demonstrating Fresnel diffraction is made by depositing a metallic film on glass. What will be

the effect of using a film that transmits one-quarter of the light irradiance?
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Problem 10.20
We can construct spiral phasor diagrams that are more tractable analytically than the Cornu spiral. Consider the

differential phasor elements

ðaÞ dAðfÞ ¼ exp½fðaþ iÞ�df where a is any real number

ðbÞ dAðfÞ ¼ f expðifÞdf:
ð10:46Þ

(The parameter f is evidently the angle each differential phasor makes with the real axis.) In each case, integrate

over an integral number of turns of the phasor, i.e. from f ¼ 0 to 2pN, to find the resultant Að2pNÞ. Then

evaluate what we call the ‘‘winding factor’’,

W ¼ jAð2pNÞj
Z 2pN

0

jdAðfÞj;
�

ð10:47Þ

which measures the amount by which the phasor is shortened relative to the total length of all its elementary

constituents.
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11 The Diffraction Grating
and its Applications

In 1912 Laue (1879–1960) had the inspiration to think of using a crystal as a grating.

S.G. Lipson and H. Lipson, Optical Physics, Cambridge University Press, 1969.

In Chapter 10 the Fraunhofer diffraction pattern in intensity from two slits illuminated by a plane

wavefront was shown to be a set of equally spaced cos-squared fringes. We now discuss the more

general problem of how such a system performs when it has a large number of slits instead of just

two. This provides a description of an important optical element, the diffraction grating. The general

solution for any grating is to evaluate the Fourier transform of the aperture function. However, much

physical insight can be gained by using a phasor approach.

In this chapter we use phasor diagrams to illustrate the mathematics of diffraction by gratings, and

develop the relation between the grating function and its transform, which is the relation between the

properties of the grating and its diffraction pattern. We give examples of diffraction theory applied to

radio antenna theory and to X-ray crystal diffraction.

11.1 The Diffraction Grating

Consider first the simple case of five slits illustrated in Figure 11.1, each separated by d, centre-to-

centre distance, from its neighbours. With two slits maxima were produced by beams from both slits

being in phase, which occurred when d sin y ¼ �ml. Clearly we can have a situation when beams

from all five slits are in phase, and this will again be when

d sin y ¼ ml: ð11:1Þ

This condition means that the path difference between adjacent slits is in all cases an integral multiple

of the wavelength. The phasors lie on a straight line and add up to the same value of amplitude as

when there is no path difference between the slits at sin y ¼ 0. Note that the condition in equation

(11.1) applies for a grating with any number of slits: it is worth remembering as the simplest form of

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



the grating equation. The successive maxima in the diffraction pattern of a grating are called its

orders, first, second, third, etc., according to the value of m. The central or zeroth order is the one for

m ¼ 0.

The phasor amplitude pattern for the five-slit grating as sin y moves away from zero is illustrated in

Figure 11.2; for comparison the amplitude pattern for a pair of slits at spacing d is also shown. The

remarkable thing is that in the five-slit case the light has been diffracted mainly into the strong

maxima at the several orders, with only weak maxima coming between them. The first zeros on each

side of an order are �l=5d apart in y (� sin y, for l � d). The orders then are approximately the

angular width we should expect for the whole diffraction pattern of a slit as wide as the whole grating;

that is to say, 5d in this case. Also we can narrow the intensity distribution of the orders by adding

more slits at the same spacing of adjacent slits.

Diffraction gratings in use at optical wavelengths often have many thousand slits per centimetre, or

lines as they are more usually called. In practice gratings are often used in reflection rather than

transmission. The discussion will be continued in terms of transmission, which is probably easier to

follow, but reference will be made to reflection gratings where necessary. Figure 11.3, showing the
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Figure 11.1 A diffraction grating with five slits. All the light diffracted into the direction y is brought to one
point in the focal plane of the lens where the Fraunhofer diffraction pattern may be seen

Figure 11.2 Amplitude diffraction patterns for five slits d apart and two slits d apart. Phase is in each case
referred to the centre of the slit pattern. Notice that in the five-slit case the phasor contributed by the central
slit remains unchanged throughout
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geometric relations of a reflection grating, has been arranged so that the discussion that follows can

easily be related to it. In general a grating is not illuminated with a wavefront arriving exactly parallel

to its plane, but with one at an angle y0 as measured in a plane perpendicular to the grating’s lines. We

shall continue in this analysis to assume the lines are narrow enough for each to be considered as the

source of a single cylindrical wavelet. Take the first line as the phase reference and let there be N

lines, so that the optical path difference across the width of the plane wavefront incident to the

reference plane for emergence at y in Figure 11.4 is

Ndðsin y� sin y0Þ: ð11:2Þ

It will be convenient to write the phase difference between light paths that pass through two adjacent

slits as c ¼ 2pdðsin y� sin y0Þ=l. Then the phase of light that has gone through the nth line is (with

respect to the first) ðn � 1Þc. The complex amplitude obtained as the sum of all the light leaving the

grating in the direction y is then

Aðy; y0Þ ¼ A0½1þ expðicÞ þ expð2icÞ þ . . .þ expððN � 1ÞicÞ�: ð11:3Þ

This geometrical series may be summed in the usual way,1 giving

Aðy; y0Þ ¼ A0

1� expðiNcÞ
1� expðicÞ

� �

¼ A0 exp
iðN � 1Þc

2

� �
sinðNc=2Þ
sinðc=2Þ :

ð11:4Þ

θ0
θ

Nd

Figure 11.3 Geometry for a reflection grating

Nd
θ0

θ

Figure 11.4 Geometry for a transmission grating

1PN�1
j¼0 aj ¼ ð1� aNÞ=ð1� aÞ.
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The exponential term gives the phase of the resultant Aðy; y0Þ relative to the zero of phase, which was

taken to be the first line. If instead we take the centre of the grating (be it line or non-line) as our

phase reference, the exponential term becomes unity and we see once again that the amplitude

remains real, although the phase can be reversed (see Figures 8.2 and 10.2).

If we are interested in the pattern as a function of y for a fixed y0, it is convenient to regard the

inclination of the illuminating wavefront as putting a linear phase shift across the grating. This may

be conveniently designated by d radians per line. Then

d ¼ 2pd

l
sin y0: ð11:5Þ

Rewriting equation (11.4) in terms of y and y0 and with the grating centre as phase reference gives

Aðy; dÞ ¼ A0

sinððNpd=lÞ sin y� Nd=2Þ
sinððpd=lÞ sin y� d=2Þ : ð11:6Þ

This is an important general expression for the diffraction pattern from N narrow lines d apart.

11.2 Diffraction Pattern of the Grating

For most purposes it may be sufficient to remember the basic equation for the diffraction maxima at

normal incidence

d sin y ¼ ml ð11:7Þ

and for incidence at angle y0

dðsin y� sin y0Þ ¼ ml: ð11:8Þ

We may also need to know the width and shape of the diffraction maxima, for which we need the

general diffraction pattern of equation (11.6). This is illustrated in Figure 11.5 where the intensity is

plotted for a grating with six lines. It has several important properties:

sin q
l /nd

l /d

Figure 11.5 General irradiance pattern for a grating with six very narrow slits
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1. The major maxima are equally spaced in sin y, and occur whenever the phase difference

between adjacent lines is an integral multiple of l, as in equation (11.8). When this occurs,

c ¼ 2pm, so that the numerator and denominator of equation (11.6) both tend to zero together. In

other words

pd

l
sin y� d

2
¼ mp ð11:9Þ

or

sin y ¼ ml
d

þ dl
2pd

: ð11:10Þ

Here m is the diffraction grating order number. So d, the phase shift per line caused by the angle of

the illumination, determines the position of the orders. Hence changing d by altering y0 shifts the
pattern so that ðsin y� sin y0Þ remains constant.

2. On the other hand, the separation of the major maxima in sin y is independent of d. Thus

ðsin yÞm � ðsin yÞm�1 ¼
l
d

ð11:11Þ

and the orders are equally spaced in sin y, this spacing depending only on the separation of the

lines, d, and the wavelength.

3. Zeros are given by the numerator of equation (11.6) being zero when the denominator is not. That

is to say, when

Npd

l
sin y� Nd

2
¼ pp ðp is integral; p=N is non-integralÞ ð11:12Þ

or, with the same restriction,

sin y ¼ pl
Nd

þ dl
2pd

: ð11:13Þ

This is similar to the expression in equation (11.10), i.e. the condition for orders, except for the

restriction that p/N is not integral. So to sum up: from equations (11.10) and (11.13) we see that the

N phasors produced by the N lines of the grating form a closed polygon at each zero; zeros thus

appear whenever the phase shift across the whole grating is a multiple of 2p. However, in the rare

cases where this condition is satisfied, but also the phase shift between each pair of lines is a

multiple of 2p, the phasor diagram is not a polygon at all, but a straight line, and instead of a zero a

major maximum is produced.

11.3 The Effect of Slit Width and Shape

So far the diffraction grating has been taken to consist of N slits so narrow that the phase change

across each could be neglected. This condition is very restrictive as lines of actual gratings may be

several wavelengths wide. To analyse the situation where this restriction is not valid, consider first the
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case of a grating which is opaque except for lines of width w spaced, as before, d apart. Then the

diffraction at a single slit follows the analysis of Section 10.3.1, restricting the light to a range of

angles depending on the width of the slit. The amplitude contributed by an individual line to the light

transmitted in any direction by the whole grating is governed by the diffraction pattern of that line

itself. Hence the resultant diffraction pattern from the grating is the product of the intensity pattern

of a single line with the intensity pattern of Figure 11.5 for the ideal grating. This is illustrated in

Figure 11.6.

11.4 Fourier Transforms in Grating Theory

We pointed out in Chapter 10 that the Fraunhofer diffraction pattern of an aperture is the Fourier

transform of the amplitude distribution across the aperture. An idealized grating has the aperture

distribution shown in Figure 11.7(a); this infinite, equidistant series of lines, or delta functions, is

known as the Dirac comb, or grating function. Its Fourier transform is also a grating function, as

shown in Figure 11.7(b). Following Section 10.3, the transform applies to the diffraction grating if the

scales are in terms of wavelengths (for the aperture distribution) and in terms of direction cosines (for

the angular distribution). As expected, the closer the lines of the grating, the wider apart in angle are

the diffracted beams of successive orders.2

The grating function represents an idealized grating, an infinitely wide grating with infinitely

narrow lines. Practical gratings, with finite overall width and with lines of finite width, are also very

conveniently analysed by Fourier theory; the theory becomes essential for the more complex case of

three-dimensional diffraction encountered in X-ray crystallography.

Line diffraction pattern

Zero at l /w

l /d
sin q

Figure 11.6 Intensity pattern for a grating with six slits of width comparable with l. The modulating envelope
(broken line) is the squared amplitude function shown more completely in the lower part of Figure 10.3

2The Dirac comb is the limit as N ! 1 of a grating with N infinitely narrow slits. Its Fourier transform, as

shown in Figure 11.7(b), displays only the primary maxima. What has become of the smaller secondary maxima

seen, for example, in Figure 11.5? The answer is that they have disappeared in the limit of N ! 1.
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We now develop the Fourier transform approach. As we shall see, this easily extends to cover the

general case of arbitrary slit structure and of arbitrary distribution of illumination over the grating.

Mathematically, the aperture distributions are constructed as products and convolutions (see Section

4.13) of various functions with the grating function. These cases develop as follows:

1. The grating function: an infinite array of delta functions, spacing d, with the form

cðxÞ ¼
Xn¼þ1

n¼�1
dðx � ndÞ: ð11:14Þ

2. Repeated line structure, i.e. an infinite array of elements each with the form f ðxÞ. The overall

aperture distribution FðxÞ is then a convolution of cðxÞ with f ðxÞ:

FðxÞ ¼ f ðxÞ ? cðxÞ: ð11:15Þ

3. Finite grating length, i.e. a grating with narrow (delta function) lines, and limited in extent by a

function HðxÞ, where HðxÞ ¼ 1 for jxj < L and HðxÞ ¼ 0 for jxj > L. Then FðxÞ is the product

FðxÞ ¼ cðxÞ � HðxÞ: ð11:16Þ

4. Finite array of structured lines, i.e. a combination of cases 2 and 3 above. Then

FðxÞ ¼ ½ f ðxÞ ? cðxÞ�HðxÞ: ð11:17Þ

Recalling from Section 4.13 that

the Fourier transform of the convolution of two functions is the product of their individual Fourier

transforms,

and correspondingly

the Fourier transform of the product of two functions is the convolution of their individual Fourier

transforms,

we find the required transforms, i.e. the diffraction patterns, of the four cases as follows:

1. The ideal grating cðxÞ transforms into an ideal angular distribution AðlÞ, consisting of diffracted

beams at equal intervals of the direction cosine l.

Grating function
F(x) (a)

(b)
Fourier transform

f (sin q)

Figure 11.7 The Fourier transform of a Dirac comb is another Dirac comb. The two scales are inversely
proportional
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2. The grating with finite linewidth transforms into the product of the transforms of the grating

function and the line structure, as in the envelope curve of Figure 11.6.

3. The grating with finite length transforms into the convolution of the transforms of the grating

function and the overall illumination function of the grating, as in Figure 11.5.

4. The general case is a combination of the above, as in Figure 11.6. In this example the individual

line structure throughout the grating is a ‘top-hat’ function, which transforms into a wide sinc

function forming the overall envelope; the uniform illumination of the grating is also a top-hat

function, which transforms into a narrow sinc function which is convolved with the grating

function to produce diffracted beams with finite width.

Notice also the ideal case of a sinusoidal grating, such as may be produced holographically

(Chapter 14), in which FðxÞ ¼ sin 2pðx=aÞ. Here the diffraction pattern consists simply of single

sharp (delta-function-like) diffraction maxima at �y ¼ sin�1ðl=aÞ. It is often valuable to consider

complicated diffraction problems, such as those encountered in determining crystal structures

(Section 11.11) or in holography (Chapter 14), as the sum of diffraction effects by many simple

components which each give single diffraction maxima.

11.5 Missing Orders and Blazed Gratings

The combination of the individual line pattern and the grating pattern, which modulates it, can

produce the effect of missing orders. Suppose the linewidth w is commensurate with the slit spacing

d; that is to say, d/w is a rational fraction. Then a zero of the individual line diffraction pattern will fall

on a major maximum of the grating pattern, so that this order will not appear. Algebraically, the

orders of the slit pattern satisfy d sin y ¼ ml while the zeros of the modulating diffraction envelope

satisfy w sin y ¼ nl, with m; n integers, n 6¼ 0. If a zero and an order coincide in the same direction y,
then d=w ¼ m=n. Given that one order is missing, all integer multiples of it will also be suppressed

for the same reason.

Irradiance

Missing order

l /d 2l /d 3l /d sin q

Figure 11.8 Missing orders. A zero of the line diffraction pattern can suppress an order entirely
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This effect is shown in Figure 11.8 for w ¼ d=2. So it is possible to remove orders by the skilful

choice of the diffraction pattern of the lines. More important, particularly in reflection gratings, it

is possible to arrange the grating so that most of the light goes into one particular order. Such a

grating, illustrated in Figure 11.9, is called a blazed grating. The lines are ruled so that each

reflects specularly in the direction of the desired order. Another way of looking at this is to observe

that the angle of illumination and the tilt of the reflecting lines is such that each line has across it

the appropriate phase shift to make it (as a single slit) diffract in the direction of the required

order.

Example. It is amusing to notice that a plane mirror can be regarded as a limiting case of a

diffraction grating, in which the separation d is equal to the linewidth w. Consider diffraction of a

normally incident wave by a grating with N wide lines:

(a) For arbitrary d and w, write an expression for the diffracted amplitude by combining the amplitude

for N narrow lines with the diffraction pattern of a single wide line.

(b) When all lines merge into one because w ¼ D, show that zeros in the line diffraction pattern

eliminate all orders except m ¼ 0, which corresponds to specular reflection.

(c) Show that the resulting diffraction pattern for w ¼ d is just what you would expect for a single line

(or mirror) of width equal to Nd.

Solution

(a) From equations (11.6) and (10.2),

AðyÞ ¼ A0

sinðNpd sin y=lÞ
sinðpd sin y=lÞ

sinðpw sin y=lÞ
pw sin y=l

ð11:18Þ

where the first ratio gives the interference between the lines, and the second ratio gives the

diffraction pattern of each line.

Direction
of blaze

Incident
light

α

i

r

θ
θ0

Blazed grating

Figure 11.9 A blazed grating
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(b) The mth order satisfies the grating equation d sin y ¼ ml. Putting w ¼ d, the numerator of the

line pattern becomes sinðpd sin y=lÞ, which will vanish for the mth order. (The reader can check

that, according to L’Hôpital’s rule, the preceding factor from interference alone has the finite,

non-zero value of �N.)

(c) When w ¼ d, cancelling out the common factor in equation (11.18) yields NA0 � sincðpNd sin y=lÞ,
which is the diffraction pattern of a single line of width Nd:

11.6 Making Gratings

The main grating effects are easy to observe, and do not require very fine gratings. If a handkerchief is

held in front of the eye and one looks through it at a well-defined edge (such as a distant roof against

the sky) it is found that as well as the actual edge at least two more can be seen. These, which are

displaced by equal increments of angle, correspond to the first and second orders of the grating

formed by the threads of the handkerchief and are spaced at l=d. The human eye can resolve angles

down to about 1 minute of arc, or 0.0003 rad. With l ¼ 500 nm, this means that grating effects can

just be detected if a grating of spacing 1mm is held in front of the eye. The millimetre graduations

on a transparent ruler will serve, but only just. A better grating to look through may be made by ruling

a 10 cm � 10 cm square with 100 lines 1mm apart. Photographic reduction to produce a negative

5mm � 5mm then gives a grating with a line spacing of 0.005 cm, in which the order separation is

0.01 rad or about 34 minutes of arc. The Sun viewed through this shows a spectacular and colourful

series of orders, overlapping more and more as higher orders are reached. (Safety warning: be careful

not to look directly at the Sun!)

Fraunhofer made his first grating in 1819 by winding fine wire between two screws. Later he made

them by ruling with the help of a ruling machine, in which a ruling point was advanced between lines

by means of a screw. The ruling was either of a gold film deposited on glass, or directly onto glass

with a diamond point. Later in the nineteenth century, Henry Rowland improved the design of ruling

machines and was able to rule 14 000 lines to the inch on gratings as much as 6 inches (15 cm) wide.

He also invented the concave grating (Section 11.7).

Excellent gratings can be made by exposing a photographic plate to the interference pattern made

by two crossing plane waves, as in Figure 8.1. The two waves must be essentially monochromatic, so

that high-order interference fringes still have full visibility; this means in practice that they are both

derived from a single laser source. The process is an elementary form of holography (see Chapter 14).

Holographic gratings are used in most modern optical spectrometers (Chapter 12).

If a grating is ruled by a machine which is not perfect, confusing effects are observed which make

its use for spectroscopy difficult. Each single spectral line is seen with several equally spaced and

dimmer lines on each side of it. These are called ghosts and in a complicated spectrum of many lines

may be difficult to distinguish from genuine lines. They arise from periodic errors in the ruling.

Suppose that the machine’s error was such that the depth of the ruling varied so as to go through a

cycle of deep, shallow, deep, every m lines, and that the transmission of the lines was proportional to

their depth. Then the grating would be like a perfect grating with another perfect grating m times as

coarse in front of it. When illuminated by monochromatic light, each order of the perfect grating

would be further split into orders separated by l=md caused by the coarse grating. It is these satellite

orders that are the ghosts. In fact any type of imperfection with a periodicity every m lines causes

such ghosts spaced at l=md, whether it be of amplitude or phase. The case we considered was of

amplitude, in which the ability to transmit light was periodically variable. In a phase variation the
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spacing of the lines, whilst remaining on the average d, is periodically variable. In this case the lines

are first too close, then too far apart, repeating this cyclically. This is like phase modulation of a

carrier wave in radio engineering. The spectrum produced has numerous ghosts spaced at multiples of

l=md and of various intensities.

11.7 Concave Gratings

In an ordinary spectrograph a grating is usually illuminated by a plane wave, requiring a collimator

lens or mirror with the light source at the focus. The diffracted spectrum is then focused onto a

detector, so that two lenses or mirrors are needed; these may introduce losses and aberrations,

especially for infrared and ultraviolet light. The difficulty may be avoided by using an arrangement

due to Rowland in which a concave grating is itself used for focusing. In this grating the lines are

ruled on the surface of a concave mirror. An interesting piece of geometry shows that if the slit is

located on a circle tangential to the mirror and with the circle’s diameter equal to the mirror’s radius

of curvature, then the several orders of diffraction are also in focus along this circle.3

In Figure 11.10, S is the slit and C the centre of curvature of the grating. Then all rays from S that

are reflected from the grating at R have the same angle of incidence a ¼ SRC because CR is normal

to the grating. The directly reflected ray SQP crosses the circle again at P. Other rays such as SR are

very nearly also focussed on the same point P; if R were on the circle the angle SRP ¼ 2a would

be independent of the position of R, so that all rays from S would be reflected through P. In fact, if the

size of the mirror is small compared with the diameter of the circle, this is true enough. Now, if one

wavelength in one of the orders is diffracted by an angle b more than the direct reflection, so that it

Concave grating
Q

O

S

C

P

P′

R

a a a
ab

b

Figure 11.10 The geometry of the Rowland circle

3A theorem from plane geometry states that an arc of a circle subtends the same angle from any point of the

circle outside the arc. For example, from any point on a circle, a semicircle (or the diameter across it) subtends an

angle of p=2 radians. Any triangle inscribed in a semicircle, with the diameter as one side, is thus a right angle.

This theorem applies to Rowland’s circle, because the grating’s departure from the circle is assumed small

enough to be ignored.
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cuts the circle at P0, the same argument applies to angle SRP0 which is constant at 2aþ b. Hence if the
slit, the grating and the photographic plate are all located on this Rowland circle, sharp spectra may

be recorded without the intervention of further optics.

11.8 Blazed, Echellette, Echelle and Echelon Gratings

When a grating is used in a spectrometer, its usefulness in distinguishing between adjacent features of

a spectrum is measured by its resolving power. We discuss this in detail in Chapter 12, where we show

for a grating that the resolving power is mN, the product of the number of lines and the order of the

diffraction. For a given number of lines, this may be increased by concentrating the diffracted light

into a high-order m. A blazed grating (Figure 11.11) is a reflection grating with tilted reflection faces,

so that light is reflected predominantly in the direction of one of the higher orders, giving the

advantage of greater resolution at a high light level. The angle a between the normal to the grating

and the normal to the grooves is called the blaze angle. The diffracted light satisfies the grating

equation d sin y ¼ ml and the major peak in the diffracted light is at y ¼ 2a.
To obtain still higher resolution from gratings it is easier to use fewer lines but increase the order of

the diffraction. By setting y ¼ y0 ¼ 90� in equation (11.8) it can readily be seen that for a

conventional plane grating the order cannot be higher than 2d=l, twice the number of wavelengths

in the space between lines, so that close ruling does not permit the use of high orders. For example, if

a grating with 5000 lines/cm was to be used at high resolution at wavelength 500 nm, the highest

order it could possibly be used in would be

mmax ¼
2d

l
¼ 2

5� 10�5 cm

1 cm

5� 103
¼ 8 ð11:19Þ

and to realize this extreme case the light would be at grazing incidence (at p=2, parallel with the

surface) and be diffracted back through p. High-order diffraction is achieved in practice by the use of

blazed gratings, and the echelette, echelle and echelon gratings. The idea of all these basically similar

systems is to separate the fixed relationship between the line spacing and the order by making the

From light source

High order spectrum

a

a

Figure 11.11 A blazed reflection grating, with blaze angle a and illuminated at normal incidence. The
diffracted light is concentrated in the direction y
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grating not flat but rather like a flight of stairs viewed from a distance. The riser of the stairs

corresponds to the line, and the tread to a displacement backwards of each line. The lines have thus

become reflecting surfaces, each one displaced backwards from the previous one to give a high order

of interference. The angle of these reflecting surfaces can now be adjusted to reflect light into the

direction in which it is desired to observe spectra.

An echelle grating about 25 cm across with 104 steps or grooves can be used in the 1000th order for

visible light, giving the product mN ¼ 107. The echelle grating is often used as a tuning element in

lasers, since it gives high angular dispersion and high efficiency. For use at longer wavelengths, into

the far infrared, a small number of grooves may be ruled directly onto metal: these are called

echellettes, meaning ‘little ladders’. Similar systems due to Michelson called echelons consist of a

pile of glass plates arranged like a flight of stairs, which may be used in either transmission or

reflection at orders as high as 20 000. The difficulties of realizing high resolution in this system

become very great, and Michelson never in fact perfected the reflection echelon, though he made

transmission echelons (Figure 11.12) successfully with some tens of plates.

(a) (b) (c)

Figure 11.12 Gratings for high-order spectrometers: (a) echellette (reflection); (b) echelle (transmission);
(c) echelon (reflection)

Entrance
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Blazed

grating

Entrance
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Concave
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(b)

Figure 11.13 Mountings for blazed gratings: (a) Littrow; (b) Ebert
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Blazed gratings are often used in an arrangement due to O. Littrow (Figure 11.13(a)) in which the

diffracted light returns almost along the incident path. This allows the same lens to be used as a

collimator and for focussing. A similar arrangement due to H. Ebert is also shown in Figure 11.13(b);

here the collimator and focussing elements are combined in a single concave mirror, avoiding the

losses inherent in lens systems.

With the very high orders of interference obtained in these devices the problem of overlapping orders

becomes extreme. Overlapping orders may, however, be dealt with by crossing any high-resolution

spectrometer with a low-resolution spectrometer, such as a prism, whose resolution is in a perpendicular

direction. The various orders are then separated in a two-dimensional format. An example is shown in

Figure 11.14, where a prism is used as a cross-disperser for a Fabry-Perot spectrometer.

The combination of a grating and a prism, often called a ‘grism’, has another advantage when it is

used in reflection (Figure 11.15). If the grating is bonded to, or etched into, the glass of the prism, the

wavelength of the incident light is reduced by the refractive index of the glass, giving a larger angular

dispersion at the grating; furthermore the resolving power may be increased in proportion by using a

grating with a smaller line spacing.

Diffuse
light source

L1

L2

S2

S3

S1

Etalon

Dispersing
prism

Figure 11.14 Cross-dispersion with low-resolution prism and high-resolution echelle spectrometers. The
spectral lines S1, S2, S3 are images of the source, dispersed by the prism. The echelle produces high dispersion
spectrum within each of the spectral lines

Reflection grating

Figure 11.15 A combination of a blazed grating and a prism, used in reflection. This ‘grism’ has a higher
resolution than a grating in air with the same geometry
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11.9 Radio Antenna Arrays

From metre wavelengths to centimetre wavelengths it is often convenient to construct large antennas

or aerials from many similar radiating or receiving elements, arranged on a one- or two-dimensional

grid. Such an arrangement is called an array. The radiating elements do not here concern us: they may

for example be half-wave dipoles. In the present discussion they are considered to be identical so that

they have all have the same polar diagram. The power polar diagram used in radio engineering is

simply the angular pattern of intensity produced at a large distance from the antenna, often expressed

as a fraction of the maximum of intensity. It is a Fraunhofer diffraction pattern. Similarly the less

familiar voltage polar diagram is the complex amplitude. Further nomenclature that is usual in

antenna work is that the main maximum or maxima of a polar diagram are called the main beam or

beams. Subsidiary maxima are referred to as sidelobes.

Consider first a one-dimensional array of elements uniformly spaced d apart. The elements can all

be excited separately, using suitable lengths of transmission line from the transmitter. New

possibilities now arise as compared with the optical diffraction grating, since the phase of each

element can be separately controlled. The main beam can be directed at any angle to the line of

elements, as in the following examples, illustrated in Figure 11.16.

11.9.1 End-Fire Array Shooting Equally in Both Directions

An end-fire array means an array with a polar diagram having equal main beams directed each way

along its length. To achieve this it must be arranged that one order appears at sin y ¼ �1, with no

order in between. To make the distance in sin y between orders equal to 2,

l
d
¼ 2 so d ¼ l

2
: ð11:20Þ

To put a main beam at sin y ¼ �1 it can be seen from equation (11.10) that

ld
2pd

¼ �1 so d ¼ �p: ð11:21Þ

I(q )

(a) (b)

I(q )

+ – + – + + + + + + +

S

–

l

Figure 11.16 Directive radio antennas made from separately excited dipole elements spaced l=2 apart. The
polar diagrams show the main beam. In the end-fire array (a) the phase is reversed in alternate elements. The
broadside array (b) is constructed a short distance (typically l=8) above a reflecting sheet S. A progressive phase
difference between elements changes the direction of the main beam, as shown in the broken line polar diagram
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So an array of spacing l=2 between (say) dipole elements phased alternately positive and negative

would have the required property. It is easy to see that in either direction along the array the

contributions from each dipole would be in phase, the delay in space from dipole to dipole

being matched by the shift d ¼ p between the dipoles. On the other hand, in the direction at

right angles to the array (for example) the contributions from alternate dipoles would cancel

each other.

11.9.2 End-Fire Array Shooting in only One Direction

Here we must put an order at sin y ¼ �1, but not another anywhere. To ensure the last

condition

l
d
> 2 or d <

l
2

ð11:22Þ

and to put an order at sin y ¼ �1

ld
2pd

¼ �1 so d ¼ � 2pd

l
: ð11:23Þ

A reasonable arrangement now might be to make d ¼ l=4 and hence d ¼ p=2. Seen from one end of

the array, the delay in space would now be compensated for by the phase shift of p=2 between

elements. Seen from the other end, the dipoles’ contributions would cancel in pairs.

The technical problem of obtaining the required phase shift is not here our concern. In practice,

because of the mutual coupling between elements, these sorts of arrays are difficult to realize. The

familiar television Yagi aerial is a realization of the end-fire array in which a single ‘driven’ element

couples with a reflector and several ‘director’ elements to approximate to the correct phase

conditions.

11.9.3 The Broadside Array

In the broadside array a single main beam is required, emerging perpendicular to the array at

sin y ¼ 0. A reflecting metal sheet spaced a quarter wavelength behind the array reinforces the

forward beam (note the phase reversal on reflection). The single main beam with low sidelobe level

elsewhere is ensured if

l
d
¼ 2 or d ¼ l=2: ð11:24Þ

Equation (11.13) then becomes sin y ¼ 2m þ dl=2pd. If the magnitude of the d term is much less

than 1, we can see that the only permitted order number is m ¼ 0, and corresponds to values of sin y
close to zero.

The sidelobes along the array at sin y ¼ �1 will then be those midway between two orders of the

general grating pattern and therefore they will be low.

The main beam will emerge perpendicular to the array if

� ld
2pd

¼ 0 or d ¼ 0: ð11:25Þ
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So in a broadside array all the elements must be fed in phase. Suppose we do not make d ¼ 0. Then

the beam will emerge at an angle determined by

sin y ¼ � ld
2pd

: ð11:26Þ

Evidently with a fixed broadside array the direction of the main beam can be steered simply by

altering the phase shift from element to element at the rate given by equation (11.26). This principle is

used in many large fixed arrays for beam swinging.

11.9.4 Two-Dimensional Broadside Arrays

In the discussions above of one-dimensional arrays we have considered only the plane of the

elements. Considering now all three dimensions the one-dimensional broadside array above would

have a main beam rather like a pancake with its plane perpendicular to the line of the array. In almost

all applications a beam narrow in both dimensions is required, and this may be achieved by making

the array two dimensional. As in the rectangular aperture treated in Section 10.3.4, the two-

dimensional polar diagram is now given by the product of the two grating patterns appropriate to

each dimension, and the resultant pencil beam may be steered independently in each direction by

applying suitable phase shifts.

11.10 X-ray Diffraction with a Ruled Grating

Diffraction gratings are expected to work well when the line spacing is a few wavelengths. If the

spacing is very many wavelengths, the diffraction angles will be small and hard to measure.

Diffraction of X-rays by a ruled grating is therefore difficult; furthermore X-rays are not easily

reflected or absorbed, so that no ordinary grating can be used.

A.H. Compton solved these difficulties very neatly by using a metal grating at nearly glancing

incidence, when X-rays are reflected quite well. For X-rays the refractive index of all substances is

less than unity by a few parts in 106 and hence the phenomenon of total internal reflection is observed

when X-rays attempt to pass from free space into a medium rather than the other way round. As the

angle of incidence of a beam of X-rays on a highly polished surface approaches 90� there is a critical
glancing angle yR ð¼ 90� � iÞ at which reflection is observed; since the refractive index n is near

unity we write

cos yR ¼ n ¼ 1� d; sin yR ¼ yR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 yR

p
¼

ffiffiffiffiffi
2d

p
: ð11:27Þ

A typical example is copper, for which yR ¼ 2002400 at a wavelength of 0.1537 nm, giving

d ¼ 17:6� 10�6. The observation of yR is not a very accurate method of determining d because

absorption and other unwanted effects make the transition from non-reflection to reflection gradual

rather than sharp. But the ability to reflect X-rays at once leads to the possibility of measuring their

wavelength with a grating. Compton and Doan in 1925 successfully achieved this measurement.

Using a grating of speculum metal with 50 lines per mm they found the wavelength of the Ka line of

molybdenum to be 0:0707� 0:0003 nm.

In Figure 11.17 the relationships of the zeroth and first order are shown. For the mth order

BD� AC ¼ dðcos a� cosðaþ bÞÞ ¼ ml: ð11:28Þ
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Since a and b are small, and since cos y � 1� y2=2 for small angles, this may be simplified to

d abþ b2

2

� �
¼ ml: ð11:29Þ

Notice that there is no difficulty in knowing which order the observed diffraction is at; the orders

starting at zero simply come out in series as b increases.

Spectrometers using grazing incidence gratings have been used successfully in satellite X-ray

telescopes to resolve spectral lines at around 1 nm wavelength.

11.11 Diffraction by a Crystal Lattice

The short wavelengths of X-rays are generally not well suited for diffraction by ruled gratings. They

are, however, conveniently close to the spacings of atoms in crystal lattices, which therefore provide

excellent three-dimensional diffraction gratings for X-rays. The diffraction pattern is intimately

connected with the arrangement and spacing of atoms within a crystal, so that X-rays can be used for

determining the lattice structure.

It was Max von Laue who first suggested that a crystal might behave towards a beam of X-rays

rather as does a ruled diffraction grating to ordinary light. At the time it was not certain either that

crystals really were such regular arrangements, or that X-rays were short-wavelength electromagnetic

radiation. In 1912 Friedrich, Knipping and von Laue performed the experiment illustrated in

Figure 11.18. X-rays from a metallic target bombarded by an electron beam were collimated by

passing through holes in screens S1 and S2 and fell on a single crystal C of zinc blende, passing

through to a photographic plate. When the plate was developed, as well as the central spot at O where

the beam struck the plate there were present many fainter discrete spots also. This showed that there

were a few directions into which the three-dimensional array of atoms in the crystal selectively

diffracted the X-rays. These depended on the orientation of the single crystal used. How could the

C
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X-ray beam

(a)

First order

Zero order

(b)

d

a a
b

Figure 11.17 Diffraction of X-rays at glancing incidence on a ruled grating

276 Chapter 11: The Diffraction Grating and its Applications



significance of these directions be understood, when the three-dimensional and doubtless very

complicated crystal structure was not known?

The answer was given by W.L. Bragg in 1912 and is so simple that (in hindsight) it may

seem completely obvious. Bragg pointed out that whatever the structure of a crystal, so long as it is

repetitive in three dimensions, it is possible to draw sets of parallel planes on each of which the

arrangements of atoms will be the same. Such planes are called Bragg planes and their separations

Bragg spacings. In any crystal structure, it is possible to draw many such sets of planes, but the

numbers of atoms on each will vary very much. If plane monochromatic X-rays fall upon the atoms of

a Bragg plane, each atom acts as a scatterer and a secondary wavelet spreads out in all directions. If

we consider a single Bragg plane these wavelets will combine in phase in the undeviated direction,

which is uninteresting, but also in a direction corresponding to ordinary reflection just like a mirror.

Now add all the other Bragg planes parallel to the first. The specularly reflected waves from the

various planes will in general be out of phase and will interfere destructively. They will all combine

in phase, however, if a rather simple condition involving the glancing angle y is satisfied. In

Figure 11.19 it is easy to see that the paths R1A and R1C are identical, so that the extra path in

reflection number 2 is CR2 þ R2B. The conditions for reinforcement are therefore the simple law of

reflection, y ¼ y0, plus4

2d sin y ¼ ml: ð11:30Þ

These two statements together form Bragg’s law for X-ray reflection from a crystal. (Note that

observationally y is one-half the deflection angle of the radiation.)

The spots found in the original experiment of Figure 11.18 represented reflection at Bragg planes.

The X-ray source contained a wide range of wavelengths, so that the Bragg law was obeyed for each

spot by a wavelength within the range. Modern X-ray diffraction techniques use monochromatic

sources; since l is fixed, a spot can then only be found by rotating the crystal until a suitable value of

y occurs. An alternative to rotating a single crystal is to use a powder containing many small crystals

at all possible random orientations.

The importance of the many methods of investigation of crystal and molecular structures which

sprang from these fundamental discoveries of von Laue and Bragg is hard to over-emphasize. The full

analysis of an X-ray diffraction pattern requires measurement not only of spot positions but also of

Crystal

Photographic
plate

X-ray
beam O

S1 S2

Figure 11.18 The experiment of Friedrich, Knipping and von Laue

4The path difference of equation (11.30) also follows directly from the construction of Figure 8.11.
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their relative intensities, since these reveal the internal structure of the repeating elements in the

crystal lattice. This may not, however, be sufficient to determine the structure of large and complex

biochemical molecules, even when they can be prepared and analysed in crystalline form; here a

Fourier transformation of a diffraction pattern requires a determination of phase as well as intensity.

The solution to this problem is found by labelling a particular site in the molecule by adding

chemically an atom of a heavy metal. This atom produces a diffraction pattern of comparable

intensity with the rest of the molecule, adding to or subtracting from the intensity of the elements of

the diffraction pattern according to the relative phase. The heavy molecule acts as a phase reference,

allowing a full Fourier transform to be made. The structure of very complex molecules can be

completely determined, even if they contain some tens or hundreds of thousands of atoms, as in a

protein molecule.

11.12 The Talbot Effect

Diffraction gratings are normally used at a distance where light from the whole of the grating

contributes equally; in contrast, if a microscope is focussed on the surface, the lines of the grating are

seen individually. If the microscope is racked away from the surface the lines at first become blurred

and disappear, but remarkably they reappear when the microscope is racked out further and is

focussed on another plane above the surface. In monochromatic light the image at this plane is an

exact copy of the grating. Figure 11.20 shows how at this distance z the light waves diffracted from

adjacent grating lines combine in phase to produce an element of the phantom grating. The path

difference between direct and adjacent rays is 2d2=l, where d is the line spacing in the grating (note

the similar calculations of sagittal distance in Figure 8.8 and the Rayleigh distance in Chapter 10), so

that the so-called Talbot distance zT where the image appears is given by zT ¼ 2d2=l. This effect,
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Figure 11.19 Diffraction of X-rays at the Bragg planes in a crystal. The extra path of ray 2 is the distance
CR2B ¼ 2d sin y
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discovered by Talbot5 in 1836, has recently been used in the reproduction of gratings without the use

of lens systems.

Problem 11.1 Numerical examples
(i) Sodium chloride, NaCl, has a face-centred cubic crystal lattice with Na and Cl atoms alternately, spaced

equidistant along perpendicular x, y and z directions. The spacing of adjacent atoms is 2:8� 10�10 m. At what

angles would you expect X-rays of wavelength 1:54� 10�10 m to be reflected by (a) planes of atoms

perpendicular to the z direction and (b) planes of atoms parallel to the z axis but at 45� to the x and y axes?

(ii) A diffraction grating consisting of just 10 narrow lines separated by a spacing of 0.001 cm is used at normal

incidence. At what angles are the first and second orders for light of wavelength 500 nm? What is the angular

half-width of the main peaks of the diffraction pattern for these two orders? What wavelengths might therefore

be separated in a spectrograph using this grating?

Problem 11.2
Light with wavelength small relative to the line spacing, l � d, strikes a grating at a glancing angle y0 � p=2.
As viewed by the incident beam, the line spacing has a projected value dproj, much smaller than d. The mth order,

where m is a small integer, diffracts off at angle y. Show that the angular dispersion �y between adjacent orders

is essentially that for normal incidence on a grating with the projected line spacing.

Problem 11.3
Consider a sinusoidal aperture function FðxÞ ¼ ð1=2Þ½1þ cosð2px=dÞ�, which is similar to that mentioned at the

end of Section 11.4 but everywhere non-negative. Using the well-known integral expansion of a Dirac delta,

dðxÞ ¼ ð2pÞ�1 Rþ1
�1 expðixyÞdy, verify that all the light is diffracted into only a few orders near m ¼ 0.

Problem 11.4
Sketch the diffraction pattern (in intensity) of a grating with N slits, in which the slit width is w, and the spacing

is d, when the grating is illuminated normally by a plane monochromatic wave.

Indicate how this pattern would be modified if: (a) the illumination is reduced at the edges of the grating;

(b) alternate lines are blacked out; (c) the amplitude in alternate lines is reduced by a grey filter to a fraction a.

z+λ

z
d

Grating Talbot image
Monochromatic

wavefront

Figure 11.20 The Talbot effect. An image of a grating is observable by a microscope focussed on a plane at
some distance above it

5Henry Fox Talbot (1800–77), inventor of photography. Like Young (see Chapter 8), he was also an expert in

ancient languages, specializing in Syrian and Chaldean inscriptions.
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Problem 11.5
How is the pattern of the grating in Problem 10.2 modified if transparent material which retards the wave by half

a wavelength covers (a) alternate slits, (b) every third slit, (c) one half of the grating?

Problem 11.6
A plane diffraction grating consists of alternate transparent and opaque lines with width a, b respectively.

Babinet’s principle shows that the Fraunhofer diffraction pattern is the same for a grating with widths a and b

interchanged, apart from the central maximum. Confirm this by means of Fourier analysis.

Problem 11.7
Derive the Fraunhofer diffraction pattern of a set of three equally spaced, equal-width slits by adding the

transform of the outer pair of slits to that of the single central slit. Repeat the exercise for a four-slit grating,

taking the inner and outer pairs separately.

Problem 11.8
The inverse of the line spacing d in a badly ruled grating increases linearly with distance x across the grating so

that

d�1 ¼ a þ bx: ð11:31Þ

Show that the nth-order diffraction maximum at angle y, formed by plane-incident light, does not emerge from

the grating as a plane wave but converges on a focus at a distance cos2 y=ðbnlÞ from the grating. (Hint: The

grating equation implies that nth-order rays from adjacent parts of the grating with different spacings dðxÞ will
not emerge parallel, but instead they will intersect at a finite distance.)

Problem 11.9
The transparency of the lines in a badly ruled grating varies periodically across the grating, so that the pth line

has transparency proportional to 1þ a sinð2pp=qÞ where a is small and the pattern of transparency repeats every

q lines. Use the convolution theorem (Section 4.13) to find the diffraction pattern of the grating.
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12 Spectra and Spectrometry

One important object of this original spectroscopic investigation of the light of the stars and other celestial

bodies, namely to discover whether the same chemical elements as those of our Earth are present throughout the

universe, was most satisfactorily settled in the affirmative; a common chemistry, it was shown, exists throughout

the universe.

The scientific papers of Sir William Huggins (1824–1910).

Modern improvements in optical methods lend additional interest to an examination of the causes which interfere

with the absolute homogeneity of spectral lines.

Lord Rayleigh, 1915.

Spectroscopy, the study of spectra, scored a spectacular success at the solar eclipse of 1868, when

Lockyer1 noted that a bright yellow–orange line emitted by solar prominences corresponded to no

known element. He named it helium; it was isolated from the terrestrial atmosphere by W. Ramsay in

1895. Spectroscopy is still the general term for the study of both absorption and emission spectra, but

we may distinguish between a spectroscope for direct visual use, a spectrograph providing

simultaneous measurement over a wide spectral range and a spectrometer,2 which measures and

records photoelectrically details of spectral lines at any part of the electromagnetic spectrum.

The choice of an appropriate spectrometer depends primarily on its resolving power, i.e. the ability

to distinguish between light of closely adjacent wavelengths. In this chapter we briefly describe the

rich variety of spectral lines and bands in the optical domain, and the factors determining their width.

We then analyse the resolving power of simple prism and grating spectrometers, and show how the

higher resolving powers which are needed for complex spectra with narrow lines demand interfero-

metric techniques such as the Fabry–Pérot or Michelson interferometers, and finally we show how

Fourier analysis techniques are used in spectral analysis.

The spectral analysis of light by filtering techniques such as the diffraction grating and Michelson

and Fabry–Pérot interferometers measures the irradiance as the filter frequency is changed. There is a

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd

1Sir Norman Lockyer (1836–1920), founded and edited for 50 years the journal Nature.
2The term spectrometer was originally used for an instrument to measure refractive index!
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Figure 12.1 Typical spectra. (a) Spectral lines in emission from argon in an arc lamp (Jodrell Bank Observatory).
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lower limit on the bandwidth of those methods. We describe how irradiance fluctuation spectroscopic

techniques acting on the detected signal can be used to measure much smaller spectral features.

12.1 Spectral Lines

Every elementary particle, whether atom or molecule, exists in one of a series of discrete quantized

energy states. The energy released or absorbed in transitions between these states appears as discrete

features in spectra radiated or absorbed by the particles; these are the spectral lines which are

characteristic of each atom or molecule, and which are the principal subject of spectroscopy.

Transitions giving spectral lines in the optical domain have energies of order 1 eV (electronvolt);

these are usually transitions between electronic states in isolated atoms. Lower energy transitions, of

order 0.1 eV and below, related to infrared, millimetric and radio radiation, are associated with

molecules. We discuss in Chapter 18 the nature of the various types of transition, and the theoretical

basis of these quantized states.

The series of quantum levels in each regime each allow a series of transitions, either to a lower

energy level in the radiation of a photon or to a higher level in the absorption of a photon. Even

the simplest atom, hydrogen (Figure 12.1(c)), therefore has several series of spectral lines. Most

atomic species, however, including atoms at various states of ionization, can be identified by some

particularly prominent and characteristic spectral lines (Figure 12.1(c)). Molecules, even such

simple molecules as O2, CO2 and H2O, which have multiple rotational and vibrational energy

levels, have very complex spectra. The band structure of polyatomic molecules often appears as a

distribution of continuous irradiance rather than a set of resolved lines. Despite the complexity,

each species of atom or molecule has its own typical spectrum, and spectral analysis can identify

and quantify constituents of light sources such as a discharge tube, or of ionized atomic species in

the solar corona, or absorbing gases such as the molecular constituents of the terrestrial

atmosphere.

Spectral lines may contain fine structure which only appears if the line is intrinsically narrow. For

example, a spectral line may be split by the effect of a magnetic field into two or more components

with different polarizations (see Chapter 18); this may be observed throughout the electromagnetic

spectrum from radio to X-rays. Again, electronic transitions at optical wavelengths may reveal a split

in quantized energy levels due to interactions between the spin of the electron and its orbital angular

momentum, and between the spins of the electron and the nucleus; these appear in spectra as fine

structure and hyperfine structure respectively (see Chapter 18).

12.2 Linewidth and Lineshape

The simplest spectral line arises from the spontaneous radiative decay of atoms between two well-

defined states with energies E2 and E1; the spectral line then has wavelength l ¼ c=n, where

frequency n ¼ ðE2 � E1Þ=h. The energies of both states have a finite width, so that light from a set of

atoms is emitted over a range of wavelengths. Every spectral line therefore has a natural width, shown

as�l in Figure 12.2. This natural width depends on the probability (the inverse of the lifetime) of the

quantum transition within an isolated atom or molecule; the longer the lifetime, the narrower the

linewidth.

Often the observed width, particularly of intrinsically narrow lines, is considerably increased by

external factors; in a gas this broadening may be due to thermal motion and collisions. The narrowest
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lines are found in isolated heavy atoms at low temperatures, such as caesium atoms whose resonant

spectral lines are exploited in atomic clocks. In contrast, broad lines occur in the ultraviolet and X-ray

spectra of highly ionized species, notably in very hot gas such as in the solar corona.

The shape of the broadened line is dependent on the mechanism of broadening. Thermal motion in

a gas causes a spread in velocity and therefore Doppler shift among individuals of the radiating

species; the resulting spread in wavelength reflects the Gaussian distribution of thermal velocities in

the gas. In contrast, collisions between atoms or molecules in a gas act to reduce the lifetime or

interrupt the phase of a transition, which has the effect of broadening the emitted line; a set of

emitting particles will have a spread of widths all centred on the same wavelength, and the lineshape

will reflect the statistical distribution of times between collisions.

The lineshape due to the collisional broadening processes, in which the central wavelengths are

unchanged, is termed homogeneous broadening; in this case the lineshape is Lorentzian (Figure 12.3).

The Lorentzian frequency profile for the radiative transition probability per unit frequency interval in

a homogeneous transition with central frequency n0 is of the form

gðn; n0Þ /
1

1þ ½2ðn� n0Þ=�nH�2
: ð12:1Þ

Here �nH is the linewidth (full width at half maximum, often abbreviated to FWHM), which is

related to the collision frequency.

For the Doppler broadening mechanism, termed inhomogeneous broadening, in which the radiating

frequencies are spread by thermal motion, the lineshape is Gaussian:

gðn; n0Þ / exp � 4 ln 2

�n2D
ðn� n0Þ2

� �� �
: ð12:2Þ

Here �nD is linewidth (FWHM), which is related to temperature. For atoms with mass m at Kelvin

temperature T

�nD
n

¼ 2½2 kT ln 2=mc2�1=2 ð12:3Þ
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Figure 12.2 Spontaneous radiative decay between two energy levels, and the resulting emission lineshape and
width
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where k is Boltzmann’s constant. For atomic or molecular weight A

�nD
n

¼ 7:16� 10�7 T

A

� �1=2

: ð12:4Þ

The derivation of these lineshapes can be found in Appendix 4. The two basic lineshapes are

illustrated in Figure 12.3 for equal integrated areas of emission. Distinguishing such lineshapes is

often an important objective of high-resolution spectroscopy.

12.3 The Prism Spectrometer

The simplest way of examining a spectrum is to use a prism to spread a light beam in angle,

following the example of Newton, who placed a prism in a beam of sunlight and showed how the

light was split into a spectrum of colours. The geometry is best understood from the thin prism, as

presented in Chapter 2, where the angles are small. The prism deviates a wavefront through an angle

y given by

y � ðn� 1Þa ð12:5Þ

where a is the apex angle of the prism and n its refractive index. Since the refractive index n

varies with wavelength l, different colours emerge as wavefronts with different angles when a plane

wavefront is incident on the prism. The angular separation dy of two components of the wavefront

with wavelengths separated by a small amount dl depends on dn/dl, and differentiation of equation
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Figure 12.3 Spectral emission lineshape for homogeneously broadened (Lorentzian lineshape) and
inhomogeneously broadened (Gaussian lineshape) profiles. The lineshapes are shown for the same centre
emission frequency and �nH ¼ �nD
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(12.5) leads to

dy � aðdn=dlÞ dl: ð12:6Þ

The angular dispersive power of the prism dy/dl is therefore directly proportional to the angle a
and to dn/dl, the rate of variation of refractive index with wavelength in the prism. As we have seen

when discussing chromatic aberration in a lens (Chapter 2), the dispersive power of a particular type

of glass is often quoted in terms of its refractive indices at specific wavelengths; for example, a typical

flint glass has refractive indices nF ¼ 1:632 at l ¼ 486 nm, nD ¼ 1:620 at l ¼ 588 nm and

nC ¼ 1:616 at l ¼ 656 nm. The conventional dispersive power, �, is then ðnF � nCÞ=ðnD � 1Þ ¼
ð1:632� 1:616Þ=ð1:62� 1Þ ¼ 1=39. The differential dn/dl is approximately �10�4 nm�1, varying

slowly over the wavelength range.

The design of a practical spectrometer requires the angular spread of the spectrum to be large

enough for an adequate separation of components with different wavelengths; for the prism this

requires glass with a large dispersive power and a large prism angle. Light with a single wavelength

will, however, spread over a certain range of angles, so that light with two closely spaced wavelengths

may overlap and not be clearly resolved. This limit on the possible resolution of closely spaced

wavelengths is due to diffraction at the whole aperture. As we see later in this chapter, the best

possible spectral resolving power of a prism depends mainly on its overall dimensions rather than on

its apex angle or refractive index.

Equation (12.6) may be restated for any shape of prism, thick or thin, given a symmetrical

configuration of the ingoing and outgoing rays, as in Figure 12.4. Let B be the base length of the

prism, l the length of its vertical sides and w the width of the wavefront. From the geometry of that

figure, w ¼ l cos½ðyþ aÞ=2� and B ¼ 2l sinða=2Þ: Equation (2.5) gives sin½ðyþ aÞ=2� ¼ n sinða=2Þ.

Figure 12.4 The angular dispersion of a prism. An incoming wavefront, width w, containing two nearby
wavelengths l and lþ dl, is refracted at or near minimum deviation. The wavefronts can be regarded as
defining constant optical path along the rays. For the wavelength change dl, the change of optical path is
therefore the same for the rays travelling through the base of the prism as for the rays travelling through the
apex; this gives Bdn ¼ wdy. Equation (12.7) for dy follows. (Note that the angular deviation is independent of
angle of incidence at minimum deviation.
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Differentiating, we find ðdy=2Þ cos½ðyþ aÞ=2� ¼ dn sinða=2Þ. Multiplying by l gives

dy ¼ B

w

dn

dl
dl: ð12:7Þ

A practical prism spectrometer requires in essence an incident plane wavefront, and a means of

recording separately the planewavefronts which emerge in different directions. The incident planewave

may be obtained from a source at a great distance, or from a point source of diverging waves which are

made plane by a lens with a positive power, such as a simple biconvex lens. The emergent wavefronts

may be examined by eye, since the eye is designed to sort out waves travelling in different directions, or

by the eyewith the help of a telescope, or by a form of camera, as shown in Figure 12.5. A narrow source

of light, usually an entrance slit, is needed. A large part of the spectrum may be seen or recorded

simultaneously on a photographic plate or a photodiode array detector such as a CCD (see Chapter 20);

the instrument may then be called a spectrograph. A spectrograph using a linear array of diode detectors

may be termed an optical spectrum analyser (OSA) or an optical multichannel analyser (OMA).

Alternatively, a narrow range may be selected by an exit slit as a source of monochromatic light; this is

then a monochromator. If the selected wavelength range is recorded in a photoelectric detector, this

becomes a spectrometer. (Although this is the formal definition, we shall follow common practice and

use the term spectrometer in the more general sense of any device used to produce, view, or measure and

record a spectrum, and thus include the spectroscope and spectrograph as special cases.)

It will be seen that for each wavelength the exit slit accepts a monochromatic image of the original

point source, formed by the two lenses, referred to as the collimating and the focussing lenses. If the

source is made a line, such as a slit in front of a flame or a discharge tube, then a line will appear for

each colour of the spectrum. The width of the line depends on the width of the slit; a wide slit admits

more light, but produces wider final images and thus gives poorer resolution. The line from a narrow

slit will be broadened by diffraction, which limits the resolving power of the spectrometer.

As shown in Figure 12.5, the focussing lens images the entrance slit onto the plane of the exit slit.

The exit slit may be scanned across the spectrum; if the focal length of the focussing lens is f , the

distance between the images for l and lþ�l is

�x ¼ f�y ¼ f
dy
dl

�l ¼ dx

dl
�l: ð12:8Þ

The quantity dx=dl is the linear dispersion of the spectrometer when used at wavelength l.
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Figure 12.5 Optical system of a prism spectrometer. The entrance slit is at the focus of the collimating lens; the
exit slit with its focussing lens forms a telescope which is moved to collect plane wavefronts over a range of angles
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A small hand-held prism spectrometer, which is useful for detection of elements in a flame or

discharge tube, would probably use the direct vision prism of Figure 12.6. Here there are two prisms

made of glasses with different dispersive power, deviating in opposite directions. The prism angles

are chosen to give zero deviation at a central wavelength.

12.4 The Grating Spectrometer

As we have seen in Chapter 11, a diffraction grating can act like a prism in deviating a wavefront

through an angle which depends on wavelength; a diffraction grating could therefore be substituted

for the prism in Figure 12.5. The diffraction grating is, however, usually used in reflection, since it is

often advantageous to avoid transmission through glass which loses light by either absorption or

partial reflection. The grating spectrometer offers improved throughput, dispersion and resolution

compared with the prism spectrometer. If collimation and focussing are achieved with concave

mirrors instead of lenses, the spectrometer can work not only at visible wavelengths but also at

ultraviolet wavelengths. The Czerny–Turner spectrometer of Figure 12.7 is a common arrangement;

here the scanning in wavelength is accomplished by rotating the plane grating. For use at wavelengths

l < 200 nm the spectrometer requires evacuation to avoid the ultraviolet absorption by air.

Figure 12.7 Czerny–Turner spectrometer. Only reflecting optical components are used, allowing operation at
ultraviolet wavelengths

Figure 12.6 Direct vision prism for a central wavelength l
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The essential geometry of diffraction at a grating, which applies equally in transmission and

reflection, is shown in Figure 12.8. Here yI is the angle of incidence, and ym is the angle of emergence

for wavelength l in the mth order. The grating equation, from Chapter 11, is

dðsin ym þ sin yIÞ ¼ ml: ð12:9Þ

where d is the line spacing and m is the order of the diffraction.

The angular dispersive power of the grating used at order m is the rate of change of angle of

emergence against wavelength. For a given angle of incidence, we obtain from equation (12.9)

dym
dl

¼ m

d cos ym
: ð12:10Þ

Thus for any given order a grating may be used just like a prism, except that it is possible to get a

much greater angular dispersion with a grating. Let us substantiate this for visible light. Based on the

table in Section 2.12, and on equation (12.7), a wide prism ðp=w ’ 1Þ of crown or flint glass has

dy=dlprism ’ dn=dl ’ �0:1 mm�1. For comparison, from equation (12.10) and the grating equation,

dy=dlgrating ’ m=d ¼ sin ym=l ’ 2 mm�1, which is an order of magnitude greater.

A new problem arises, however, when a wide range of wavelengths is being observed: the spectra

in different orders may overlap. If a range from l1 to l2 is observed in the mth and ðmþ 1Þth order,

there is an overlap if

ml2 > ðmþ 1Þl1: ð12:11Þ

The wavelength range between the overlapping orders is the free spectral range. If the spectrometer is

set for operation at wavelength l1 in order m, it will pass ml1 in first order, ml1=2 in second order

and so on. For a grating used at normal incidence, and with the diffracted beam in the mth order at

angle y, the overlap occurs when

d sin y ¼ ml0 ¼ ðmþ 1Þl1: ð12:12Þ

The free spectral range dlFSR ¼ ðl0 � l1Þ for order m is then

dlFSR ¼ l1
m

: ð12:13Þ

md
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q I qm

Figure 12.8 A diffraction grating showing the angles of incident and emerging light. The total number of lines
in the grating is N
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The confusion this may cause when observing a spectral range greater than dlFSR may be avoided by

using a filter to restrict the wavelength range of the incident light, or by adding a cross-dispersing

device such as a second grating or prism which spreads the spectrum in an orthogonal direction. Note

that a prism used alone concentrates light into a single spectrum, with no overlapping orders; for this

reason astronomical telescopes may use a large thin prism in front of the objective lens or mirror, to

display a small spectrum for each of many stars observed over a large angular field.

12.5 Resolution and Resolving Power

The purpose of a spectrometer is to distinguish between light waves separated by a small wavelength

difference dl. The prism and the grating spectrometers change the wavelength difference dl into a

difference of emergence angle dy in the wavefronts at the two wavelengths. The relation between dl
and dy is determined for a prism by the geometry of the prism and the dispersive power of its

material, and for the grating by the line spacing and the order of diffraction. Light from a single

wavelength will, however, emerge over a spread of angles, so that there is a limit to the possibility of

distinguishing two spectral lines closely spaced in wavelength.

The resolution of a spectrometer is a measure of its ability to distinguish two adjacent spectral

lines, such as the two sodium D-lines at 589.0 and 589.6 nm. Even if the entrance slit of the

spectrometer is made very narrow, the exit slit will be scanning across two diffraction images whose

width is determined by the characteristics of the grating, as in Figure 12.9(a). If these are well

separated, the spectral lines are resolved. If they are so close as to merge into a single image, as in

Figure 12.9(b), they are unresolved. In Figure 12.9(c) the separation is such that the first diffraction

zero of one image falls on the maximum of the other, giving an obviously double line. This is known

as Rayleigh’s criterion for the limit of resolution of the spectrometer. When the line profile is a sinc-

squared function, as in Figure 12.9, the dip is 20% below the maxima; for different profiles, including

those without a clear minimum, it is useful to define resolving power in terms of the FWHM of a

x
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Figure 12.9 Diffraction images of adjacent spectral lines in a spectrograph. In (a) the lines are clearly
resolved, while in (b) they merge and are unresolved. The separation in (c) illustrates Rayleigh’s criterion for
resolution. Each image is represented as ½sinðx � x0Þ=ðx � x0Þ�2, where x is in radians and x0 locates the peak

290 Chapter 12: Spectra and Spectrometry



single line. (A check that this gives a similar result may be usefully made on the sinc-squared function

of Figure 12.9.)

The quantity l=dl is obviously a useful measure of the power of any device to distinguish different

wavelengths and is called the chromatic resolving power R of the spectrometer:

R ¼ l
dl

¼ n
dn

: ð12:14Þ

For example, a resolving power greater than 1000 is needed to resolve the two sodium D-lines.

We may conveniently distinguish three ranges of wavelength resolution in spectrometers, from the

point of view both of technique and of application. The simplest, using prisms and gratings, are useful

for distinguishing the various spectral lines of a complex source and deducing its atomic or molecular

content. The higher resolution R > 5� 105 demanded for measuring the detailed shape of spectral

lines usually demands an interferometric technique, such as the Fabry–Pérot interferometer described

in Chapter 8. Finally, the very narrow bands in scattered laser light may be resolved by a totally

different technique in which fluctuations of irradiance, measured through optical mixing spectro-

scopy, are related to the spectrum (Section 12.10).

12.6 Resolving Power: The Prism Spectrometer

Following a similar argument to the discussion of diffraction in Chapter 10, we note that the

minimum width (at a given wavelength) of the image at the exit slit in Figure 12.5 is due to diffraction

in the limited width of the wavefront emerging from the prism. The angular spread is determined by

the ratio of the wavelength to the width w of the wavefront. This angular width dy is l=w, measured

from the line centre to the first minimum. Using the thin prism approximation, equation (12.6) this is

related to the dispersion in the prism by

dy ¼ l
w
� a

dn

dl
dl ð12:15Þ

giving the criterion for resolving the two spectral lines

l
dl

� wa
dn

dl

� �
: ð12:16Þ

Instead of extending the simple geometry applicable to equation (12.16) from thin to the

geometrically more complicated case of thick prisms, we choose to derive an interesting simple

expression for the chromatic resolving power of any prism spectrometer by a direct consideration

of optical paths and Rayleigh’s criterion (Section 12.5 above). In Figure 12.10 a thick prism is

shown at the position of minimum deviation showing the approximate paths for plane waves of

light with wavelengths l and lþ dl. Now for the diffraction maximum of one emerging wavefront

to lie on the minimum of the other there must be one wavelength difference between them at the

top of the wavefront emerging from the prism (see for example the way the phasors curl up in

Figure 10.2). So for light of wavelength l, equating optical path lengths for the extreme rays in air

and in the prism,

2a ¼ nB ð12:17Þ
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where n is the refractive index of the prism at wavelength l and B is its base length. For wavelength

lþ dl the refractive index is nþ dn. The plane waves for l and at the resolved wavelength lþ dl
are separated by a small angle because of the extra optical path in the prism, so that

2a� l ¼ ðnþ dnÞB ð12:18Þ

giving

l ¼ �dn B ð12:19Þ

which may be written as

R ¼ l
dl

¼ �B
dn

dl

� �
: ð12:20Þ

At minimum deviation the resolving power of the prism spectrometer depends on the base length

and the spectral dispersion of the material of the prism. Equation (12.20) for the chromatic resolving

power of a thick prism shows that the angle of a prism is unimportant; what matters is the distance B

traversed in the prism by the extreme ray, and the value of dn/dl for the material of the prism. For a

heavy flint glass dn/dl can be about �10�4 nm�1 so that for a wavelength of 500 nm and a large

prism with B ¼ 10 cmð¼ 108 nmÞ we have

l
dl

¼ 104 and dl ¼ 500 nm

104
¼ 0:05 nm ð12:21Þ

which is adequate for the resolution of the two sodium D-lines but insufficient for detailed

measurement of the structure of each line.3 The practical limit of resolution of the prism spectrometer

is often set by aberrations in the imaging optics.

3The concept of spectral lines is very deep in the language: we talk of atoms having emission lines, and of the

21 cm hydrogen line in the radio spectrum, and so on. But of course the atoms do not have lines; they emit or

absorb at certain wavelengths. It is the spectrograph that displays the different wavelengths in the light presented

to it as a series of lines, each of which is an image of the slit, each at a different wavelength. So that when we

speak of lines in an X-ray spectrum, or of the emission lines of molecules in millimetre-wave astronomy, we are

using a word which is an interesting fossil originating in the simplest and oldest technique of spectral analysis, the

prism spectrometer.

B 
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Figure 12.10 Geometry for the chromatic resolving power of a prism
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12.7 Resolving Power: Grating Spectrometers

We have seen that the chromatic resolving power of a prism is related to its overall size. The same

arguments applied to the grating spectrometer give a similar result: the resolving power is again

related to its overall size. Figure 12.11 shows diffracted wavefronts for two wavelengths l and lþ dl
emerging from a grating. The angular distribution of irradiance in these two spectral components is

shown for a separation dl where they are just distinguishable. Again following Rayleigh’s criterion,

the maximum of one diffraction image falls on the first zero of the other.

The diffraction angle y for wavelength l at normal incidence is given by the grating equation

d sin y ¼ ml ð12:22Þ

where d is the line spacing of the grating and m is the order of diffraction. For a grating of width W

and a total number of lines N we can write W sin y ¼ mNl. Across the emerging wavefront there is a

difference in path mNl. Now concentrate on the irradiance in this one direction as the wavelength is

changed by a small amount dl. Light of wavelength lþ dl has its principal maximum at the same

angle as the first minimum for light of wavelength l (see Section 11.2). If the extra path W sin y
changes by one wavelength the irradiance will fall to zero. So for two adjacent spectral lines to be

distinguished the criterion is

mNlþ l ¼ mNðlþ dlÞ ð12:23Þ

or

R ¼ l
dl

¼ mN: ð12:24Þ

That is to say, the chromatic resolving power of a grating is the product of the order in which it is used

and the total number of lines across it. The order acts like a kind of gearing: in the third order a given

Figure 12.11 Chromatic resolution in a grating spectrograph with N lines, used in the mth order, showing the
separation of two components of a plane wavefront
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change of wavelength dl changes the path difference between adjacent lines by three times as much

as it does in the first order, giving three times the resolution.

Note from equation (12.10) that the dispersion of the grating is related to the line spacing, while the

resolving power is related to the number of wavelengths m in the extra path labelled ml in

Figure 12.11. To obtain the same resolving power with a grating in the second order as for the

large prism in Section 12.6 above would need 5000 lines across it. So a grating on the scale of the

prism which was 10 cm across would need only 500 lines per cm. Fraunhofer, Rowland and

Michelson all improved techniques for ruling conventional gratings, Michelson eventually producing

gratings more than 15 cm across giving resolving powers of 4� 105. Modern gratings are produced

by a simple form of holography (Chapter 14), in which two crossing beams of monochromatic laser

light form an interference pattern on a photographic plate. The plate surface is a film of photoresist

which is subsequently etched to leave lines of clear glass on which a metallic coating is deposited.

Holographic gratings can be made with up to 6000 lines per millimetre; furthermore, they are very

uniform, avoiding the periodic errors which produce ‘ghosts’ (Chapter 11).

A further development of holographic gratings uses volume phase holography (VPH), which

gives gratings in which none of the light is lost at a partially reflecting surface. The crossed laser

beams used for making holographic gratings on a surface will make a three-dimensional pattern in a

thicker film of gelatin; this pattern can be preserved as a three-dimensional pattern of changed

refractive index in a completely transparent film. The refractive index changes are produced by a

hardening process in the gelatin, in which the collagen molecules become cross-linked when

exposed to blue light. The result is a grating which behaves like a crystal in X-ray diffraction

(Chapter 11). It can be used in reflection or transmission, and has the normal dispersive power of a

plane grating. The Bragg wavelength, which is the centre of the envelope of efficiently reflected

wavelengths, can be tuned by tilting the grating. The width of the envelope is related to the

thickness of the gelatin film.

12.8 The Fabry–Pérot Spectrometer

The Fabry–Pérot interferometer described in Chapter 8 forms the basis of a spectrometer of very high

resolution over the spectral range from the ultra-violet to the near infrared. There can be large optical

path differences between the multiple beams emerging from a Fabry–Pérot etalon, so that the

interferometer behaves like a grating used at very high order. An equivalent grating would have a

number of lines approximately equal to the finesse F (see Section 8.8).

The interferometer may be either a solid glass or quartz disc with parallel sides or two plane-

parallel discs of glass or quartz separated by a small gap (Figure 12.12). When the transmitted

interference fringes are focussed onto a screen, different wavelengths produce rings of different

radius, so that there is radial dispersion. The centre of the ring system can be isolated by setting a

circular aperture in the screen which enables a small wavelength band to be selected and then

photoelectrically detected (Figure 12.13). That aperture is equivalent to the exit slit used in the

grating spectrometer. The spectrum may then be scanned by changing the effective spacing nh of the

interferometer, where using equation (8.22), 2nh cos y ¼ ml, the irradiance can be recorded as a

function of h. The change in nh may be achieved by changing n, through a change in the pressure in

an air-spaced interferometer, or by changing h using a piezoelectric drive on one of the interferometer

plates. At the centre of the ring pattern, and for normal incidence, ml ¼ 2nh. With pressure scanning

and a 1 cm gap, a change of one order requires a change in refractive index �n ¼ 2� 10�5 or a

change in pressure of about 0.1 bar (recall the discussion of the Rayleigh interferometer in
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Section 9.1, and that for air under standard conditions n� 1 ¼ 3� 10�4). The central aperture should

isolate only a small band of wavelength or equivalently only a small fraction of an order (see Problem

12.7). The reflecting surfaces of the solid etalon and air-spaced interferometers have coatings whose

reflectivities determine the finesse.

When used at high order the Fabry–Pérot interferometer suffers from the problem of overlapping

orders, described in Section 12.4 for the grating spectrometer. Following the same argument, the free

spectral range dlFSR is the wavelength spacing of two lines whose interference maxima coincide at

orders m and mþ 1. For an etalon spacing h and n ’ 1,

dlFSR ¼ l=m ¼ l2=2h: ð12:25Þ

Since the free spectral range is very small, there may often be overlapping of orders, and the

interferometer is normally used in conjunction with a grating spectrometer. The effective resolution

of the grating spectrometer may be set to the free spectral range of the interferometer dlFSR, while the
resolution of the combined spectrometer and interferometer is the resolution dl of the interferometer.

From equation (8.28), the resolution of the Fabry–Pérot spectrometer is related to the finesse F and

the free spectral range which are given by

F ¼ dlFSR
dl

¼ p
2

2r0

1� r02

� �
: ð12:26Þ
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Figure 12.13 Fabry–Pérot spectrometer

h

Reflective coatings
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Figure 12.12 Fabry-Pérot interferometer etalons: (a) solid, (b) air spaced
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The resolving power is

R ¼ l
dl

¼ lF
dlFSR

¼ pr0

1� r02
m; ð12:27Þ

from which R ¼ mF .

The Fabry–Pérot interferometer is usually used in high order. For an interferometer spacing

h ¼ 1 cm and l ¼ 500 nm, m ¼ 4� 104. Then for a typical finesse of 25 a resolving power of

R ¼ 106 is obtained. For an interferometer with a larger spacing of say 10 cm, the resolving power

becomes R ¼ 107. We see that the resolving power of the Fabry–Pérot spectrometer can be at least an

order of magnitude greater than for the diffraction grating. In addition to limits on the practical finesse

attainable set by the reflection coefficient of the Fabry–Pérot surfaces there are limitations from

imperfections in the flatness of the plates. A further advantage of the Fabry–Pérot spectrometer is that

the amount of light which passes through the spectrometer from the source to the detector, termed in

general for a spectrometer the étendue,4 is about two orders of magnitude greater than for the grating

spectrometer. The étendue is defined as L ¼ A�, where A is the area of the exit slit and � is the solid

angle subtended at the exit slit by the final focussing lens; it may be interpreted as the limiting

aperture, e.g. the size of the grating or interferometer plate. The solid angle is that subtended by the

slit at the collimating lens in a grating spectrometer, or that subtended by the aperture at the focussing

lens in a Fabry–Pérot spectrometer. The quantity L is a constant through the spectrometer if there are

no losses, such as from absorption or scattering.

A type of interferometer offering extremely high resolution is the confocal Fabry–Pérot interferom-

eter, constructed with two spherical reflecting surfaces of radius r and separated by a distance d ¼ r.

This provides very high finesse up to 1000, resolving powers greater than 109 and with high luminosity.

In this case the input light needs to be mode matched to the interferometer. The confocal Fabry–Pérot

interferometer is useful in measuring narrow linewidth sources such as the mode structure and linewidth

of laser sources, isotope shifts and atomic beams. For mirror reflectances r02 ¼ 0:99 a finesse of

F ¼ 300 can be obtained, so that for r ¼ d ¼ 3 cm two spectral lines only 6� 10�7 nm apart at

l � 500 nm could be resolved; in frequency terms they would be separated by only 0.72MHz.

12.9 Twin Beam Spectrometry; Fourier Transform Spectrometry

We now turn to another interferometric method of spectrometry, which also extends the resolution by

many orders of magnitude beyond that available from grating spectrometers. We have so far

described the performance of a twin beam interferometer in terms of an ideally narrow spectral

line. The next step is to consider its action with a single spectral line with finite width or structure, and

then to generalize for a wide spectral range and complex spectrum. The twin beam interferometer, in

its many and varied forms and in many ranges of wavelength, will then be seen to be a very powerful

spectrometer, capable of resolving and measuring the width and shape of narrow line profiles.

Suppose that sodium light provides the illumination in a twin beam interferometer, such as the

Michelson seen in outline in Figure 12.14. As is known from examination in any optical spectroscope

that can resolve wavelengths separated by a fraction of a nanometre, the prominent yellow light

4With alternative terms luminosity (which is not to be confused with the photometric term luminance), light-

gathering power or throughput.
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from sodium is made up of the two D-lines, at approximately 589.0 and 589.6 nm, or in Ångstrom

units5 l ¼ 5890 Å and 5896 Å, of almost equal irradiance. These wavelengths differ by just over

0.1%. As a first approximation consider them as very narrow compared to their separation. Suppose

that the interferometer is first set up with one mirror M1 and the image M2 of the other in coincidence

at the centre and at a slight angle so that vertical fringes of near-zero order are seen. Then as M1 is

moved further away the fringes move sideways, and as each crosses the centre of the field of view it

indicates a change of one wavelength in the optical paths between the two arms; that is to say, a

movement of l=2 in the position of M1. As M1 moves further and the order of the interference

increases, the fringes become less and less visible. This is because the two sets of fringes from the two

wavelength components get progressively out of phase until a point is reached when the maxima of

one set coincide with the minima of the other, giving a nearly uniform irradiance. The condition for

this is that the mirror M1 moves a distance d1, and N1 fringes have crossed the field, where

2d1 ¼ N1l1 ¼ N1 �
1

2

� �
l2: ð12:28Þ

We must be clear that there is no interference between the two sets of fringes, as light on different

frequencies cannot be coherent. It is simply that the addition in irradiance of two nearly equal but

antiphase sine waves gives a more or less uniform irradiance. Increasing d still further, the visibility

improves and the fringes become sharp again when

2d2 ¼ N2l1 ¼ ðN2 � 1Þl2: ð12:29Þ

Changing d by about 3 cm allows about 100 such cycles of visibility variation to be counted, each

with about 1000 fringes between them. Such an observation allows the separation of the two lines to

be accurately determined.

In general when light from a spectral line with any structure is examined in the twin beam

interferometer it is found to give high-visibility fringes at zero path difference d, which decrease in

M1

M2

C

S

Photodetector

Figure 12.14 Outline of a Michelson interferometer

5The wavelengths of the sodium D-lines and other familiar lines are often quoted in Ångstrom units

ð1 Å ¼ 10�10 mÞ.
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visibility as d is increased, and finally disappear. (See Sections 8.3 and 13.2 for the definition of fringe

visibility.) A recording of the fringe visibility as d is varied is an interferogram. In the example of

sodium light above it is easy to see that the form of the interferogram implies the spectrum of the light

causing it. Michelson realized this and pointed out that the two quantities are related as a Fourier

transform pair. He was then able to use a twin beam interferometer to find the shape and structure of a

single spectral line, and discovered the hyperfine structure of many spectral lines previously regarded

as monochromatic.

The Fourier relationship is analysed in Chapter 13 using the Wiener–Khintchine theorem of Section

4.15, but the concept is easily demonstrated as follows. Consider first a single spectral component with

wave number k (where k ¼ 2p=l). Two waves of equal irradiance IðkÞ arrive at the detector with phase
difference kx resulting from a path difference x (this is the path difference d in the Michelson

interferometer). The measured irradiance then varies with x in the familiar pattern of cosine fringes:

IðxÞ ¼ IðkÞð1þ cos kxÞ: ð12:30Þ

Each component of an extended spectrum IðkÞ incident on the splitter produces a pattern of cosine

fringes with amplitude IðkÞ cos kx, which adds as the integral

IðxÞ ¼ 1

2

Z 1

0

IðkÞ½1þ cosðkxÞ�dk ¼ 1

2
Ið0Þ þ 1

2

Z 1

0

IðkÞ cos kx dk: ð12:31Þ

With
R1
0

IðkÞdk ¼ Ið0Þ, the quantity ½2IðxÞ � Ið0Þ� is the cosine Fourier transform of the spectrum.

Leaving aside the more general formulation via the Wiener–Khintchine theorem, this result shows

that in an interferometer the measurement of fringe visibility as a function of order of interference

gives the profile of a spectral line via a Fourier transform. Furthermore, the resolving power of the

interferometer is equal to the order of interference reached in the measurement.

Another way of specifying the order of interference in this relationship is in terms of the difference

in travel time for the two light beams; for a path difference x this is simply t ¼ x=c, and the order of

interference is m ¼ x=l ¼ nt, where n ¼ c=l is the frequency of the light.

As an example of Fourier transform spectrometry we show in Figure 12.15 how the fringe visibility

VðtÞ varies with t (and therefore with order m) for two different line profiles: these are the Lorentzian
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Figure 12.15 The fringe visibility as a function of delay t between two beams for (a) Lorentzian and
(b) Gaussian line profiles
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and Gaussian profiles, shown in Figure 12.3, which result from two different processes of line

broadening. The fringe visibility is shown as a function of t, the difference in travel time for the two

beams of the interferometer. For both profiles, at small path differences, t ! 0 and VðtÞ ! 1, while

for large path differences, i.e. as t ! 1, VðtÞ ! 0. The shapes of the two visibility functions are

considerably different: the Gaussian profile transforms6 into a Gaussian visibility function, while the

transform of the Lorentzian extends to larger values of t. Comparison with Figure 12.3 shows that this

extension is due to the sharp peak at the centre of the Lorentzian.

A comparison of a conventional spectrometer such as a prism or grating spectrometer with a

twin beam interferometric spectrometer such as the Michelson of Figure 12.14 shows that the

interferometer has practical advantages in sensitivity as well as in resolving power. First, an extended

source can be used, instead of a narrow slit; second, a single detector can be used to record light from

the whole spectrum simultaneously while the interferometer is scanned by varying the delay t, in
contrast to a detector scanning a narrow part of a dispersed spectrum. The efficient use of a single

detector, called multiplex advantage, is vital for efficient measurements in the far infrared where

multiple element detector arrays are not available.

The only loss of light in the interferometer occurs at the arrangement for splitting the beam, but

even this can be avoided by systems such as those of Figure 12.16. In (a) double mirrors are used in

a Michelson interferometer to allow both beams to be detected at D1 and D2, while in (b), due to

J. Strong, an ingenious interleaved mirror reflects all the light into a single detector.

Starting in the 1950s, the speed and sensitivity of Fourier transform spectroscopy revolutionized

infrared astronomy; for example, observations of the spectra of planetary atmospheres could be made

in a single night, which previously would have required many years to complete.

12.10 Irradiance Fluctuation, or Photon-Counting Spectrometry

When the width of a spectral line is so small that the required resolution exceeds that available

from the Fabry–Pérot interferometer, and the path difference in a twin beam interferometer with

sufficient resolving power becomes impracticably long, a different technique becomes available

for measuring spectral lineshapes. As we have seen in Section 12.9, the twin beam interferometer

is measuring the correlation between the amplitudes of light in two light beams one of which is

delayed by time t, which is the same as the correlation between two points in a single beam

separated by a path difference x ¼ ct. Instead of sampling a light beam at two separated points, the

technique of irradiance fluctuation spectrometry (also termed photon-counting spectroscopy) is

concerned with fluctuations of irradiance at a single point; the differences between the wave at

two separate points are then converted into fluctuations as the wave passes a single point. These

fluctuations are usually on a very short time scale, and are averaged out in most photometric and

interferometric measurements. The irradiance of light from a spectral line with width dn fluctuates
only on a time scale of order 1=dn, which is usually so small that it is unresolvable, and the

fluctuations are unnoticed. But if they can be resolved, using techniques with a time resolution

better than 1=dn, the frequency spectrum of the irradiance fluctuations can be related to the

6The astute reader will note that the Fourier transform of a spectral lineshape is a complex function (see

Chapter 4), while we have treated fringe visibility V simply as a real quantity. This will be dealt with in Chapter

13, where we discuss visibility in terms of an autocorrelation function. We note, however, that for symmetrical

lineshapes such as those considered here the phase of the transform is constant and may be set to zero.
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spectral lineshape and width through a Fourier transformation similar to that of Fourier transform

spectrometry.

We now consider the amplitude and irradiance of light from a number of atoms radiating

independently, so that their phases are randomly distributed. (This an example of chaotic light,

as contrasted with laser light; see Chapters 13 and 16.) The radiation from each atom is coherent for a

time t; then the phase changes discontinuously by a random amount, as might occur at a collision in

a gas. We add the contributions of a large number n of atoms to the observed instantaneous

irradiance. Assuming the contributions all have equal amplitudes, the sum contains the resultant of

the individual phases as an amplitude factor aðtÞ and the irradiance averaged over a long time is

proportional to

�I ¼ jaðtÞj2 ¼ j expðif1tÞ þ expðif2tÞ þ . . .þ expðifnÞj
2: ð12:32Þ

Since the cross-terms between the phase factors for different radiating atoms give a zero average

contribution, the average irradiance is, as expected, simply n times the irradiance from an individual

atom.

Instantaneously, however, the irradiance may be very different. The sum of many amplitude

contributions with random phase is shown in Figure 12.17. After a time greater than t the phases

change and the sum will change unpredictably. The probability distribution PðIÞ of the irradiance I at
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M1

M2

(a)

(b)

D

S

M1

M2

Figure 12.16 Examples of efficient twin beam interferometers. (a) The double mirrors in a Michelson
interferometer allow the returning beam to be detected at D1 in addition to the beam at D2. (b) All the light from
the source S reaches a single detector in this arrangement due to Strong. The path difference is changed by
moving the multiple mirror M2, which interleaves with a fixed mirror M1
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an instant of time t follows a statistical law familiar in the theory of the random walk:

PðIÞdI ¼ I
�1

exp � I

I

� �
dI: ð12:33Þ

The average amplitude of the irradiance fluctuations given by the difference �I between the

instantaneous irradiance and the mean is

�
ð�IÞ2

�1=2
¼
�
I2 � I

2

�1=2
¼ I ð12:34Þ

so that the r.m.s. fluctuations equal the mean irradiance itself.

Figure 12.18 shows an example of the form of fluctuations in the irradiance of chaotic light, on a

time scale comparable with the coherence time t. The rate of fluctuation is inversely proportional to

the coherence time, and in more detail the spectrum of the fluctuations in irradiance is related to the

shape and width of the spectral line by a Fourier transform; however, the information about the line is

not as comprehensive as in normal Fourier transform spectrometry.

a (t)

f (t)

Figure 12.17 The sum of many unit vectors with random phases, as in a random walk. The amplitude and phase
of the sum are shown as aðtÞ and fðtÞ. This is a phasor diagram for chaotic light

t

5

4

In
te

ns
ity

 I
(t

)/
I

3

2

1

0
Time t

Figure 12.18 An example of the fluctuations in irradiance for a collision-broadened chaotic light source. �I is
the mean irradiance averaged over a long time compared with the mean time t between collisions
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Irradiance fluctuation spectroscopy requires a time resolution better than the coherence time: this is

achieved by the high time resolution of detectors such as the photomultiplier, which can reach 10�9 s.

Narrow linewidths are often expressed as a frequency bandwidth; the irradiance fluctuation technique

therefore applies to bandwidths up to about 108 Hz. In the same terms diffraction grating

spectroscopy, which is a filter technique, is applicable to bandwidths of 1010 Hz and higher, while

Fabry–Pérot interferometry methods are applicable in the range 106 to 1012 Hz, overlapping with

irradiance fluctuation and diffraction grating methods. Irradiance fluctuations were first observed for a

low-pressure mercury lamp in a famous experiment by Hanbury Brown and Twiss which we describe

in Chapters 9 and 13.

The fluctuations in irradiance are measured by an optical mixing technique in which the light is

incident on a photodetector and the resulting post-detection signal analysed. The photodetector

responds to the irradiance IðtÞ, or square of the light electric field, with photocurrent

iðtÞ / IðtÞ / jEðtÞj2, and hence is termed a ‘square-law detector’. The incident light IðoÞ has

oscillating frequencies � 1014�15 Hz; the waves at these frequencies interfere and produce beat

frequencies in the detected photocurrent at all the difference frequencies ðoa � obÞ, or beat

frequencies, within the linewidth �o. Examples of this are the light scattered from moving particles,

or the difference frequencies between laser modes, in which cases frequencies may be produced in the

range up to 108 Hz.

The frequency spectrum of the incident light IðoÞ is related to the frequency spectrum PðoÞ of the
photodetector output, as follows. The beat frequency content of the photocurrent PðoÞ may be related

to the time autocorrelation function CðtÞ of the photocurrent by a Fourier transform. In the

autocorrelation function the photocurrent at time t is compared with delayed versions at ðt þ tÞ for
the range of delay times t.

CðtÞ ¼ hiðtÞ:iðt þ tÞi
hii2

: ð12:35Þ

Then

PðoÞ ¼
Z 1

0

CðtÞ expðiotÞdt: ð12:36Þ

A light signal with a distribution of frequencies �o implies that it has a fluctuating irradiance. The

photocurrent iðtÞ is derived directly from the irradiance of the incident light, so that the time

autocorrelation function of the photocurrent is directly related to the correlation function of the light

irradiance

CðtÞ / hIðtÞIðt þ tÞi
hIðtÞi2

: ð12:37Þ

This in turn can be related to the correlation function of the electric field. (The proportional

sign is used in equation (12.37) since the measured autocorrelation function of the photocurrent

depends on the optical mixing process, particularly the scattered light coherence and the detector

area.

The nature of the correlation functions of the electric field amplitudes and intensities in describing

the coherence properties of the light are discussed in Chapter 13. The spectral distribution of the light

incident on the photodetector can be obtained from the measurement of the time dependence of the
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photocurrent iðtÞ, followed by the Fourier transform to give the frequency spectrum IðoÞ of the

incident light.

There are two main forms of irradiance fluctuation spectroscopy, illustrated in Figure 12.19. In

homodyne spectroscopy, also referred to as self-beat spectroscopy, the incident light only is

detected. The frequency spectrum of the detected signal can be measured by an electronic

spectrum analyser or, more commonly, by determining the time autocorrelation function CðtÞ of
the photocurrent.

Alternatively in heterodyne spectroscopy the light is mixed with a reference beam on the

photodetector, i.e. a local oscillator. For example, in a light scattering arrangement the reference

beam is split off from the incident laser beam.7 With a reference signal at angular frequency o0, the

heterodyne beat frequency contains terms in the difference frequencies ðo� o0Þ which contain the

spectral information on IðoÞ.
Coherent mixing of the light at the detector is necessary to maintain the interference condition, and

optical mixing is ensured by the use of an aperture before the detector to select one coherence area. A

source of wavelength l having a diameter d1 and spaced a distance D from the aperture will be

spatially coherent at the aperture for an aperture diameter d2 � Dl=d1. As an example, for the

conditions l ¼ 500 nm, d1 ¼ 1mm and D ¼ 0:5m, a detector aperture d2 ¼ 0:25mm is required.

Further considerations of coherence area are discussed in Chapter 13.

The time autocorrelation CðtÞ of the photocurrent is determined electronically by either a digital or

analogue autocorrelator. In the digital mode the autocorrelation is performed on the arrival of the

stream of photons nðtÞ, which are converted into current pulses. The time scale is divided into equal

time channels and the number of photons detected in any one channel equal to or above a set number

is counted as a ‘1’ or, if below, as a ‘0’. The autocorrelation can be performed digitally and rapidly.

This method of digital correlation is known as photon correlation spectroscopy and is particularly

appropriate to low light levels.

7An alternative nomenclature that is sometimes used is to term this arrangement homodyne and to use

heterodyne to refer to optical mixing with a reference signal which is shifted in frequency.
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Figure 12.19 Arrangements for irradiance fluctuation spectroscopy. (a) Homodyne spectroscopy.
(b) Heterodyne spectroscopy, optical mixing with a reference source
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12.11 Scattered Laser Light

The technique of measuring the width and shape of very narrow spectral lines through irradiance

fluctuations finds its most useful application in the examination of the scattering of laser light in

substances such as colloids, polymers and biopolymers.

An example of the application of homodyne and heterodyne spectroscopy is the measurement of

the size distribution of microparticles dispersed in a liquid and undergoing Brownian motion.

The diffusion coefficient D of spherical particles of mean radius R in a fluid of viscosity Z and

temperature T is described by the Einstein diffusion equation D ¼ kT=6pZR. Scattering of a laser

beam by the particles confers a linewidth �n on the scattered light which is dependent on the

diffusion coefficient and the scattering angle y: light scattered at angle y in a medium of refractive

index n has linewidth

�n ¼ D
4pn
l

� �2

sin2ðy=2Þ: ð12:38Þ

This is measured by a homodyne spectrometer, or in a heterodyne spectrometer by combining the

scattered light with a reference beam direct from the laser (Figure 12.20). Fluctuations in irradiance

are measured by photon counting in time intervals shorter than 1=�n. (The laser light itself contains
effectively no fluctuations, and the dominant term in the fluctuations is the second-order correlation

of the scattered light, as discussed in Chapter 13.) The magnitude of the fluctuations, and the ease of
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Figure 12.20 Photon correlation spectrometry applied to laser light scattered from a colloidal solution
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measurement, are greatly enhanced if the irradiance of the reference beam is much larger than that of

the scattered light.

As an example, measurement of the mean size of microparticles in a water dispersion by a typical

heterodyne spectrometer might use an He–Ne laser operating at a wavelength of 632.8 nm, detecting

scattered light at angle y ¼ 90�. The linewidth of the scattered light would be measured by the photon

correlation technique; if this gave a decay constant tc ¼ 5� 10�3 s, the linewidth 1=tc ¼ 200Hz.

From equation (12.38), the mean diffusion coefficient of the microparticles is 5:73� 10�13 m2 s�1.

The mean radius of the microparticles determined by this measurement is R ¼ kT=6pZD ¼
3:8� 10�6 m, for T ¼ 300K and Z ¼ 10�3 N sm�2.

Problem 12.1
A spectrometer uses a prism with base width 5 cm and apex angle 11:5�, i.e. 0.2 radians, made of glass with

refractive index n ¼ 1:70 at l ¼ 650 nm and 1.72 at l ¼ 590 nm. Calculate the resolving power, using equation

(12.15), and the angular separation of the two sodium lines at 589.0 nm and 589.6 nm. Will this spectrometer

resolve the hydrogen doublet at l ¼ 656:272, 656.285 nm?

Problem 12.2
In a high-resolution spectrograph three prisms are arranged with their bases on a semicircle with diameter 20 cm

as in Figure 12.21, so as to deflect light through 180�. Show that for refractive index 1.5 the prism angle must be

approximately 82�. Find the resolving power if

dn

dl
¼ 5� 104 m�1:

Problem 12.3
Calculate the spectral resolving power for wavelengths near 500 nm of the following spectrometers: (i) A glass

prism, base length 4 cm, with refractive index varying linearly between n ¼ 1:5477 at l ¼ 546 nm and

n ¼ 1:5537 at l ¼ 486 nm. (ii) A grating 4 cm across with 1500 lines per cm, used in the third order. (iii) A

Fabry–Pérot interferometer in which F ¼ 40, and with a spacing 4 cm between the plates.

Problem 12.4
Light falls normally on a reflection echelon grating in which the step height is h and the step width is w (the light

falls vertically, not horizontally as in Figure 11.12(c)). Show that the path difference between light beams

reflected in direction y to the normal from corresponding points on adjacent step faces is

hð1þ cos yÞ � w sin y: ð12:39Þ

Figure 12.21 A prism spectrometer with increased dispersion and resolving power
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For small y the mth order then emerges at

y ¼ 2h� ml
w

: ð12:40Þ

For an echelle with h ¼ 1 cm and w ¼ 0:1 cm, and with 40 such steps, find for wavelengths near 500 nm:

(i) the order m for y near zero

(ii) the angular separation of orders

(iii) the resolving power.

Problem 12.5
The resolving power l=dl of a grating spectrograph is the difference between extreme optical paths measured in

wavelengths. Show that the resolvable frequency difference dn is related to the difference t in light travel times in

the extreme paths by

dn ¼ 1

t
: ð12:41Þ

Problem 12.6
For a Lummer plate (Figure 12.22), which produces a fringe pattern with high resolution, show that the resolving

power at grazing emergence angle is approximately

l
dl

¼ L

l
ðn2 � 1Þ: ð12:42Þ

Note that the plate is used with the emergent beams at a very small angle to the surface of the plate. The light

beam enters the plate via prism P; l is the vacuum wavelength, the refractive index is n and the length is L.

Problem 12.7
To use the Fabry–Pérot spectrometer shown in Figure 12.13 as a filter it should transmit only one order of

interference fringe. Show that for order m this requires a restricted cone of light passing through the etalon. Show

that if f is the focal length of the focussing lens, this requires the diameter d of the aperture to be less

than 2f
ffiffiffiffiffiffiffiffiffi
2=m

p
.

P

Figure 12.22 The Lummer plate
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13 Coherence and Correlation

All nature is but art unknown to thee,/ All chance, direction which thou canst not see;/ All discord, harmony not

understood.

Alexander Pope, An Essay on Man.

How can a particle go through both slits? Nobody knows, and it’s best if you try not to think about it.

Richard Feynman.

In much of the discussion of diffraction and interference phenomena in previous chapters we have

been concerned with monochromatic light produced by a point source. No actual source is either a

point or strictly monochromatic, so that no light has a perfect sinusoidal waveform extending

indefinitely in space or in time. In practice there is a loss of coherence both in space and in time,

whose consequences have already been encountered in the two basic types of interferometer, of which

Michelson’s stellar interferometer and spectral interferometer are examples. The stellar interferom-

eter investigates the waves from a source which is nearly, but not quite, a point, finding that the loss of

coherence across the wavefront is a measure of the angular diameter of the source. The spectral

interferometer investigates the waves from a narrow spectral line by exploring the loss of coherence

between two points separated along the path of the wave, which is a measure of the coherence in

time. In this chapter we define coherence more precisely, and apply the concepts of coherence and

correlation to the practical issues of spatial and temporal coherence, and to angular and spectral

resolution in optical instruments. We also discuss the concept of spatial filtering, in which the Fourier

components of an object are modified in instruments such as the phase contrast microscope.

As in previous chapters, there is barely any need to introduce the concept of a photon into these

discussions. Inevitably, however, the question addressed (or avoided) by Feynman (see the epigraph

above) will be asked, together with the related question about interference involving material

particles. We address these briefly at the end of this chapter.

13.1 Temporal and Spatial Coherence

The loss of coherence along the path of a wave from a source which is nearly, but not quite,

monochromatic can be understood by supposing that the wave is made up of a large number of individual

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



wavetrains of finite length, each produced by a single atom or other emitter, and that a large number of

such wavetrains pass a point in the time taken to make an observation of irradiance. Light from two points

closer together than the length of an individual wavetrain will be coherent and will interfere as for a

monochromatic source. Light from two points along the wavetrain separated by more than the length of

the wavetrain is incoherent, and cannot show interference effects. (Instantaneously the two samples will

add according to their phase relation, but this will change randomly during the observation, since the

relative phase of different wavetrains is randomly distributed.) There is a typical coherence length in the

light beam, which is the length of an elementary wavetrain. There is also a typical coherence time, which

is the time for the elementary wavetrain to pass any point.

Coherence time is fundamentally related to spectral width, as may be seen from the Fourier

analysis of Chapter 4. The precise relation depends on the shape of the spectral line, but it is useful to

remember that for a coherence time �t, and an oscillation with angular frequency bandwidth �o;
there is a general relation, known as the bandwidth theorem1

�t�o � 1: ð13:1Þ

The corresponding coherence length lC can be estimated by

lC ¼ c�t ¼ c

�o
: ð13:2Þ

An important example is a wave consisting of a randomly phased assembly of Gaussian wave groups.

We show later (Section 13.3) that the coherence time of the assembly is that of a single group, and

analyse here a single group. For a Gaussian group with amplitude E0 and central wavelength o0,

EðtÞ ¼ E0 expð�at2 þ io0tÞ, i.e. a cosine wave modulated by a Gaussian envelope (Figure 13.1), the

spectral width (full width at half maximum, FWHM) is �n ¼ �o=2p. The duration tG is the

coherence time where, from Fourier analysis (again using the FWHM for tG),

tG ¼ 2 ln 2=p�n ¼ 0:441=�n: ð13:3Þ

t

tG

E(x,t)

Figure 13.1 A wave group with Gaussian profile. The spectral width of the group �n and the coherence time tG
are related by tG ¼ 2 ln 2ðp�nÞ�1

1This is analogous to the Heisenberg uncertainty relationships in quantum mechanics between the momentum

p, position x and energy E of a particle �p�x � �h=2 and �E �t � �h=2.
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The minimum time–bandwidth product for a Gaussian signal, using FWHM values, is�n tG ¼ 0:441.
(A general Fourier analysis theorem states that uncertainties in time and bandwidth, using r.m.s.

values, are related as �n�t � 1=2; this is a precise equality for a Gaussian signal.)

Correspondingly, for a wave velocity c the coherence length is

lC ¼ ctG ¼ 2 ln 2 c

�o
¼ 2 ln 2l2

p�l
¼ 0:441

l2

�l
: ð13:4Þ

Typical coherence lengths for light are readily estimated from equation (13.4). A colour filter on a

white light might isolate a band 50 nm wide at a wavelength of 500 nm; the coherence length is then

about 2 mm; a Fabry-Perot filter with a bandpass width of 1 nm increases this to 100 mm. A narrow

spectral line from a sodium or mercury lamp can have a coherence length of 1 cm. Light from a

carefully constructed laser can have a coherence length of 10 km or more, although very short

wavetrains only a few microns long can be also be made by lasers specially designed to operate in a

pulsed mode (Chapter 16).

In the discussions of the stellar interferometer (Chapter 9) the condition for obtaining interference

between light derived from mirrors transversely separated across the wavefront was expressed as

the inequality f0 � l=dM, where f0 is the angle subtended by the source and dM is the separation of

the mirrors. Put in a way more suitable for the present discussion, the maximum distance apart of the

mirrors for interference fringes to be observed is of order l=f0; this is a measure of the transverse

coherence distance. The pair of mirrors can be thought of as exploring the degree of coherence across

the light wave; full coherence can only be found if the pair are close together, while if they are

separated by more than the transverse coherence distance the light at the two mirrors becomes

incoherent and no interference can be observed.

The concept of transverse coherence concerns the phase relation between waves at different points

in a wavefront perpendicular to the direction of propagation. In accordance with the most common

usage, we will term this spatial coherence; it is also sometimes referred to as lateral coherence. For a

wave with perfect spatial coherence, any two points of a wavefront are in phase and remain in phase.

The degree of spatial coherence of a thermal light source is dependent on the size and distance of the

source.

Typical transverse coherence widths dM can be estimated from dM � l=f0. Light from a source 1

arcsecond across has a coherence width of about 10 cm: light from the nearest large-diameter stars

(angular diameter � 0:01 arcseconds) has a coherence width of 10m, and light from the Sun, which

subtends an angle of 30 arcminutes at the Earth, has a coherence width of only 50 mm.

We are thus led to the idea that around any point in the light field produced by a real source

there is a region of coherence, with a transverse size governed by the angular diameter of the

source, and a longitudinal size governed by the bandwidth of the radiation from the source. Any

interferometer that is to produce fringes from the light of the source must derive its two beams

from points within this volume. The two sorts of Michelson interferometer we have discussed are

the archetypes, the stellar (Chapter 9) using transverse separation and the spectral (Chapter 12)

using longitudinal separation. We now define coherence more precisely and quantify these

relationships.

Light sources may be divided broadly into two types with different coherence properties: chaotic

and laser sources. Chaotic sources include gas discharge lamps, filament lamps and other thermal

sources in which radiation is produced by independently emitting atoms. Lasers, described in Chapter

15, produce radiation by an entirely different mechanism of stimulated emission.
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13.2 Correlation as a Measure of Coherence

The previous section provided a qualitative description of the coherence of a light beam. It is now

useful to put the nature of coherence on a more quantitative basis and introduce the concepts of

degree of coherence and partial coherence.

Let E1ðtÞ and E2ðtÞ be the amplitudes at points P1 and P2 in a light field in vacuo. The irradiances at

P1 and P2 are then E1ðtÞE�
1ðtÞ and E2ðtÞE�

2ðtÞ where the asterisk indicates the complex conjugate.2 An

interferometer, of any type, combining the light from these two points adds the two amplitudes with,

in general, a time delay and measures the square of the sum. The interferometer measures an

irradiance IðtÞ as a function of t, the relative delay, given by

IðtÞ ¼ hfE1ðt þ tÞ þ E2ðtÞgfE�
1ðt þ tÞ þ E�

2ðtÞgi: ð13:5Þ

The brackets h i denote an average over time t, extending over many oscillation periods. If this

expression is multiplied out it gives

IðtÞ ¼ hE1ðt þ tÞE�
1ðt þ tÞi þ hE2ðtÞE�

2ðtÞi þ hE1ðt þ tÞE�
2ðtÞi þ hE�

1ðt þ tÞE2ðtÞi: ð13:6Þ

The first two terms are simply the average irradiances at P1 and P2, I1 ¼ hE1ðt þ tÞE�
1ðt þ tÞi and

I2 ¼ hE2ðtÞE�
2ðtÞi. The second two terms give the interference fringes (note that they are each other’s

complex conjugate, so that their real parts are equal and their imaginary parts cancel). Suppose the

fields at P1 and P2 are from a monochromatic point source of period T . Then when t ¼ NT (N is an

integer) all four terms are equal and the irradiance is four times that at P1 or P2. On the other hand,

when t ¼ ðN þ 1
2

TÞ, the second pair of terms are negative (each being the average of the product of

cosines in antiphase) and they exactly cancel the first pair of terms. Thus fringes of 100% visibility

are observed.

Evidently it is the second pair of terms that are of interest, expressing the relationship between the

complex amplitudes at the two points. As they are each other’s complex conjugate, each has the same

information as the other and conventionally the first is taken. Mathematically this is the cross-

correlation of E1ðtÞ and E2ðtÞ, regarding these as complex functions of time; in optics it is the mutual

coherence �12ðtÞ. Thus

�12ðtÞ ¼ hE1ðt þ tÞE�
2ðtÞi: ð13:7Þ

Notice that when P1 and P2 coincide and t ¼ 0, the mutual coherence reduces to hE1ðtÞE�
1ðtÞi, which

is simply the irradiance.

The correlation of the field at the same point but at different times is described by the first-order

correlation function

�11ðtÞ ¼ hE1ðt þ tÞE�
1ðtÞi

�22ðtÞ ¼ hE2ðt þ tÞE�
2ðtÞi:

ð13:8Þ

2As shown in Section 5.6, irradiance is properly related to a peak field E0 as I ¼ 1
2
E0cE2

0. For clarity in the

following discussion we omit the constant factor 1
2
E0c.

310 Chapter 13: Coherence and Correlation



For zero delay time, t ¼ 0, the self-coherence functions are proportional to the irradiances:

�11ð0Þ ¼ hE1ðtÞE�
1ðtÞi ¼ I1

�22ð0Þ ¼ hE2ðtÞE�
2ðtÞi ¼ I2:

ð13:9Þ

More generally, �12ðtÞ may be normalized to give a complex degree of mutual coherence where

�11 ¼ I1 etc.

g12ðtÞ ¼
�12ðtÞffiffiffiffiffiffiffiffi

I1I2
p ¼ �12ðtÞ

f�11ð0Þ�22ð0Þg1=2
: ð13:10Þ

In terms of g12ðtÞ the interferometer output measures an irradiance

IðtÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffi
I1I2

p
Re ðg12ðtÞÞ: ð13:11Þ

The complex quantity g12ðtÞ may be expressed as jg12j exp½if12ðtÞ�. Two quasi-monochromatic

waves of frequency o0, E1;2 ¼ E0 expðio0t � ikr1;2Þ, having an optical path difference ðr1 � r2Þ and
hence a phase difference f12ðtÞ ¼ kðr1 � r2Þ, give a resultant irradiance

I ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffi
I1I2

p
jg12j cosf12ðtÞ: ð13:12Þ

For equal irradiances I1 ¼ I2

I ¼ 2I1½1þ jg12j cosf12ðtÞ�: ð13:13Þ

The visibility of a set of interferometer fringes, as in Newton’s rings or Young’s double slit fringes

of Chapter 8, is defined as

V ¼ Imax � Imin

Imax þ Imin

: ð13:14Þ

From equation (13.12)

Imax ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffi
I1I2

p
jg12ðtÞj

Imin ¼ I1 þ I2 � 2
ffiffiffiffiffiffiffiffi
I1I2

p
jg12ðtÞj:

ð13:15Þ

Then the visibility is

V ¼ 2
ffiffiffiffiffiffiffiffi
I1I2

p

I1 þ I2
jg12ðtÞj: ð13:16Þ

When I1 ¼ I2 the visibility of the fringes is equal to the modulus of the complex degree of mutual

coherence.

The function g12ðtÞ makes precise the conceptual ideas of the previous section. If we regard P1 as

fixed and P2 as exploring the space around it, there is in general a complex number g12ðtÞ for each

position of P2 and value of t. The degree of correlation, i.e. the magnitude of g12, varies between 0 and 1.
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The degree of first-order temporal coherence gð1ÞðtÞ is given by the normalized coherence function

gð1ÞðtÞ ¼ hEðt þ tÞE�ðtÞi
hEðtÞE�ðtÞi : ð13:17Þ

Two waves have complete temporal coherence when gð1ÞðtÞ ¼ 1, and complete incoherence for

gð1ÞðtÞ ¼ 0. For 0 < jgð1ÞðtÞj < 1 there is partial coherence. The ability to form interference fringes is

determined by the value of gð1ÞðtÞ.
The coherence function gð1ÞðtÞ may be generalized to include the spatial dependence of the fields at

space and time points ðr1t1Þ and ðr2t2Þ:

gð1Þðr1t1; r2t2Þ ¼
hEðr1t1ÞE�ðr2t2Þi

½hjEðr1t1Þj2ihjEðr2t2Þj2i�1=2
: ð13:18Þ

Most of the interference phenomena we have discussed will be seen to be interpretable in terms of the

complex degree of correlation. For example, in the case of Young’s double slit, the delay t varies across
the plane where the fringes are seen. If the light illuminating the slits is monochromatic and the slits are

effectively point sources, the light will be completely coherent and g12ðtÞ will be unity everywhere.

Fringes of unit visibility result. If a wide source is used the light at the two slits is only partially

correlated, g12ðtÞ is less than unity and so is the visibility. Similarly, if a broad spectrum source is used,

the fringe on-axis, where t ¼ 0, will be visible, but those off-axis where t 6¼ 0 rapidly decline in

visibility. The explanation in Michelson’s stellar interferometer (Section 9.12) in terms of overlapping

of fringes from different parts of the source, and in the case of twin beam spectrometry (Section 12.9)

from different wavelengths, is now seen to be more elegantly expressed in terms of coherence.

13.3 Temporal Coherence of a Wavetrain

As an example we calculate the first-order temporal coherence for the elementary case of a wavetrain

consisting of a large number of Gaussian wave packets uniformly spaced in time, at interval T , and

having random, uncorrelated phases fj, so that the field amplitude is

EðtÞ ¼
Xn

j¼1

exp½iðot þ fjÞ� exp � 1

2
a2ðt � jTÞ2

� �
: ð13:19Þ

We can view the separate terms as a crude model for the quasi-monochromatic, but mutually

incoherent, flashes of radiation emitted by a collection of excited atoms. Each term in equation

(13.19) has a temporal width given by the standard deviation s ¼ 1=a. The uniform spacing in time,

and the Gaussian profile, are adopted for simplicity.

From equation (13.17)

gð1ÞðtÞ ¼
R1
�1 Eðt þ tÞE�ðtÞdtR1

�1 jEðtÞj2dt
: ð13:20Þ

The numerator is

Z 1

�1
Eðt þ tÞE�ðtÞdt ¼

X
j;k

exp½iðotþ fj � fkÞ� exp � 1

2
a2½ðt þ t� jTÞ2 þ ðt � kTÞ2�

)(
ð13:21Þ
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Because the phases are uncorrelated, the factors exp½iðfj � fkÞ� will fluctuate randomly in sign and

tend to suppress the contribution from all terms except those with j ¼ k. With the help of the integral3Z 1

�1
expðAx2 þ BxÞdx ¼

ffiffiffiffiffiffiffi
p
�A

r
expð�B2=4AÞ ð13:22Þ

equation (13.21) can be evaluated:Z 1

�1
Eðt þ tÞE�ðtÞdt ¼

X
j

expðiotÞ
Z 1

�1
expf�1=2a2½ðt þ t� jTÞ2 þ ðt � jTÞ2�gdt

¼ n
ffiffiffi
p

p
a�1 exp iot� 1

4
a2t2

� �
: ð13:23Þ

Setting t ¼ 0 gives the denominator of equation (13.20), and we find

gð1ÞðtÞ ¼ exp iot� 1

4
a2t2

� �
¼ exp½iot� 1

4
ðt=sÞ2�: ð13:24Þ

We saw in equation (13.16) that for equal irradiances of the two fields, the fringe visibility is equal to

the modulus of this function

VðtÞ ¼ jgð1ÞðtÞj ¼ exp � 1

4
ðt=sÞ2

� �
: ð13:25Þ

This is the Gaussian function which is plotted in Figure 12.15(b).

Notice that the coherence falls off rapidly with the time difference t. We can identify the coherence

time with the temporal width of each wave packet: tC ¼ s. The coherence length is then lC ¼ cs.
It should be noted that even though the entire wavetrain may be unlimited, coherence disappears

beyond the time scale of a single wave packet. This correctly reflects the assumed lack of phase

correlation between pairs of wave packets.

13.4 Fluctuations in Irradiance

The light from a chaotic light source, such as a gas discharge lamp, contains fluctuations in phase and

irradiance due to the random nature of the light emission. The fluctuations in irradiance may be

quantified in a similar manner to the first-order electric field correlation function. The light is sampled

with measurements of the irradiance I separated by a time interval t. Each measurement of I is an

average over one cycle, and the fluctuations are recorded as differences from the mean irradiance4 �I.
The product of the differences is averaged over a time longer than the coherence time, as indicated by

the angle brackets in

hðIðtÞ � �IÞðIðt þ tÞ � �IÞi ¼ hIðtÞIðt þ tÞi � �I2 ð13:26Þ

3R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, 1965, p. 357.
4In Section 5.5 we defined irradiance, for rapid harmonic oscillations, as a time average of the energy flux

S: I ¼ �SðtÞ. To allow for more complex time variations of irradiance, in this chapter we define its instantaneous

value by IðtÞ ¼ �SðtÞ, with the bar standing for a time average over a short time, preferably the response time of

the detector.
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since

hIðtÞi ¼ hIðt þ tÞi ¼ �I: ð13:27Þ

The second term of equation (13.26) is a second-order correlation function. Expanding in terms of

the electric fields this is

hjEðtÞj2jEðt þ tÞj2i ¼ hE�ðtÞE�ðt þ tÞEðtÞEðt þ tÞi: ð13:28Þ

Expanding each term as E expðiotÞ or E exp½ioðt þ tÞ�, and averaging over times large compared

with 1=o, we find

hjEðtÞj2jEðt þ tÞj2i ¼ jhE�ðtÞE�ðt þ tÞij2 þ �I2: ð13:29Þ

The second-order (intensity) correlation function is therefore determined by the magnitude of the

first-order (field amplitude) correlation function (equation (13.8).

These ideas can be formalised in the form of a normalized second-order degree of temporal

coherence, defined as5

gð2ÞðtÞ ¼ hIðtÞIðt þ tÞi
�I2

: ð13:30Þ

The normalized gð2ÞðtÞ may be expressed in terms of the electric fields as

gð2ÞðtÞ ¼ hEðtÞEðt þ tÞE�ðtÞE�ðt þ tÞi
hEðtÞE�ðtÞi2

: ð13:31Þ

For chaotic light the range of gð2ÞðtÞ, in contrast to gð1ÞðtÞ, is 1 � gð2ÞðtÞ � 2. Figure 13.2 illustrates

the dependencies of gð1ÞðtÞ and gð2ÞðtÞ as a function of the delay time; the figure shows these for both

Gaussian and Lorentzian spectral lineshapes. A connection between the second-order and first-order

correlation functions may be derived for chaotic light (but not for laser light) from equation (13.29).

Dividing each side by hEðtÞE�ðtÞi2 we obtain

gð2ÞðtÞ ¼ 1þ jgð1ÞðtÞj2: ð13:32Þ

For chaotic light and zero delay time, gð2Þð0Þ ¼ 2, so that for zero delay the detection rate is twice that

for long delay times. This indicates that photons arrive in pairs at zero time delay and independently

at long time delays. This is known as the photon bunching effect for thermal (chaotic) light sources.

13.5 The van Cittert–Zernike Theorem

The van Cittert–Zernike theorem provides a useful connection between the complex degree of spatial

coherence and diffraction theory; it enables the forms of calculated diffraction patterns to be used in

5The normalized first- and second-order correlation functions in the quantum electrodynamics description of

the light field are usually designated gð1Þ and gð2Þ.

314 Chapter 13: Coherence and Correlation



connection with coherence theory, provided the functional terms are interpreted correctly. This

relationship can be illustrated by a simplified one-dimensional analysis: the construction is shown

in Figure 13.3. A quasi-monochromatic incoherent source illuminates a distant screen at which

the spatial coherence is to be determined. The amplitude of the source at point S is SðyÞ and the

field amplitude at some fixed point of reference P1ðx ¼ 0Þ, derived from amplitude SðyÞ over the

source, is

Að0Þ ¼ 1

d

Z
source

SðyÞ expðikr0Þdy ð13:33Þ

4−2−4
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21−1−2 
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Stable wave

0
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Figure 13.2 First-order gð1ÞðtÞ and second-order gð2ÞðtÞ coherence functions for chaotic light having Gaussian
or Lorentzian frequency distributions
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where k is the wave vector (we have assumed that the screen is sufficiently far away from the source

that radial distances from source to screen can be approximated by the perpendicular distance, d).

By dropping a perpendicular from P1 to line SP2, we find r ’ r0 þ x sin y provided jxj � r0.

Consequently at point P2 on the screen

AðxÞ ¼ 1

d

Z
SðyÞ exp½ikðr0 þ x sin yÞ�dy: ð13:34Þ

The correlation CðxÞ between the amplitudes at x ¼ 0 and at position x is

CðxÞ ¼ hAð0ÞA�ðxÞi ð13:35Þ

¼ 1

d2

Z Z
SðyÞS�ðy0Þ expð�ikx sin y0Þdydy0: ð13:36Þ

The time average of CðxÞ only contains contributions from SðyÞ:S�ðy0Þ. For an incoherent source, SðyÞ
and Sðy0Þ are uncorrelated and the product SðyÞ:S�ðy0Þ has a time average only for y ¼ y0, when
hjSðyÞj2i ¼ IðyÞ, the irradiance of the source. The angle brackets denote the time average.

The complex degree of spatial coherence gðxÞ in this one-dimensional example may be expressed

as the normalized time average of CðxÞ:

gðxÞ ¼ hCðxÞi
hAð0ÞA�ð0Þi : ð13:37Þ

Substituting for CðxÞ we find

gðxÞ ¼
R

IðyÞ expð�ikx sin yÞdyR
IðyÞdy

: ð13:38Þ

When the source is small compared with the distance of observation d, so that sin y ’ y, the complex

degree of spatial coherence gðrÞ is equal to the normalized Fourier transform of the irradiance

distribution IðyÞ within the source. The degree of spatial coherence is equal to the amplitude produced

at P2 by a spherical wave passing through an aperture of the same size and shape as the extended source

and converging to P1.

d

S

P2

P1
θ

Screen

Source

x

r

r0

Figure 13.3 The geometry of the van Cittert–Zernike theorem, in one dimension
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In the description of diffraction contained in Section 10.2 it was shown that the Fourier transform

of the complex amplitude distribution across the aperture represented the Fraunhofer diffraction

pattern. It is seen that equation (13.38) is a normalized one-dimensional representation of the Fourier

transform of the irradiance at the source. The integral has the same form as the diffraction integral

(equation (10.11)) with the quantity IðyÞ interpreted in the diffraction equation as equivalent not to

the irradiance, but to the field amplitude distribution at the source, when acting as an aperture.

The analogy may readily be extended to two dimensions. Then the general statement of the van

Cittert–Zernike theorem is:

the complex degree of spatial coherence gðr1r2Þ between a fixed point and a variable point in a plane

illuminated by an extended source is equal to the normalized Fourier transform of the irradiance distribution

Iðyx; yyÞ.

The analogy with the diffraction theory developed in Chapter 10 can be taken further. For a slit

source of uniform irradiance, gðr1r2Þ is a sinc function; similarly for a uniform circular source, e.g.

from a star, gðr1r2Þ is a Bessel function. Similarly, the transverse coherence diameter measured by a

Michelson interferometer is seen to be related to the separation of two points in the observing screen

at which gðr1r2Þ ¼ 0.

13.6 Autocorrelation and Coherence

In Section 4.15 we considered autocorrelation of a time-varying quantity AðtÞ. The autocorrelation

function is defined as the time average

�ðtÞ ¼ hAðt þ tÞA�ðtÞi: ð13:39Þ

This was shown to be the Fourier transform of the power spectrum of AðtÞ. Comparison with equation

(13.7) shows that the longitudinal coherence function for a plane wave, where E1ðtÞ ¼ E2ðtÞ, is the
autocorrelation function, which is the Fourier transform of the power spectrum. The transverse

autocorrelation �ðxÞ is similarly the Fourier transform of the angular distribution of radiance across

the source. Any interferometer which measures coherence along a wavetrain can find �ðtÞ, and hence

the spectrum of the wavetrain; any interferometer which measures coherence along an axis x

transverse to a wavefront can find �ðxÞ, and hence the radiance distribution across the source.

Fourier transform spectrometry, as described in Chapter 12, is therefore a process of measuring the

autocorrelation along a wavetrain, using an interferometer such as Michelson’s spectral interferom-

eter over a range of path differences. The fringe amplitude is measured as a function of path

difference, and a Fourier transformation gives the spectrum. The spectrum can be measured with a

resolution which depends only on the maximum delay tmax between the two beams; the frequency

resolution is approximately 1=tmax.

The extent of the coherence across a wavefront, as measured in the stellar interferometer, depends on

the angular width of the source of light; as we have seen in the previous section, there is a Fourier

transform relation between angular distribution of radiance across the source and the decrease of

coherence across the wavefront. Autocorrelation in space, i.e. transverse to the wave, is related to the

angular distribution of the source; autocorrelation in time, i.e. along the wave, is related to its spectrum.

The concept of coherence is also useful in communications, where a narrow-bandwidth electrical

signal is analogous to an optical spectral line. Any modulation of the signal will give a finite width to

the spectrum, and very broad-bandwidth electrical noise is analogous to white light. In radio
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astronomy the spectral lines of interstellar gas, such as hydrogen at 21 cm wavelength and carbon

monoxide at 2.7mm wavelength, have a width which is due to a combination of thermal broadening

and Doppler shifts within an interstellar cloud. A typical linewidth might be �n ¼ 1MHz; then

according to equations (13.3) and (13.4), the coherence time would be about 1 ms and the coherence

length about 100m. The coherence length and the whole autocorrelation function can be measured by

an autocorrelation technique shown in Figure 13.4. Here the electrical signal passes through a circuit

containing a variable delay (ranging up to about 1 ms in the example above), and the direct and

delayed signals are recombined in a detector. The detector multiplies the sum, giving an average

product which measures their correlation. The correlation function is obtained by measurements over

a range of delays. The spectrum of the signal is then found by a Fourier transform of the

autocorrelation function, using the Wiener–Khintchine theorem set out in Section 4.15.

The output of the detector in Figure 13.4(a) also contains an unwanted constant component,

proportional to the intensity of the input signal, as in equation (13.11). This can be removed by the

switching system of Figure 13.4(b), where a phase-reversing switch has been included in the direct

signal path. When this operates the sign of the correlation reverses, while the intensity component is

unchanged. The output of the detector is the square of the input; if the signal amplitude is A þ a,

where a is a correlated component which is small compared with the uncorrelated component A, the

detector output switches between A2 þ 2aA þ a2 and A2 � 2aA þ a2, giving a difference signal 4aA

which is proportional to a. The phase switch is operated periodically by a driver which also reverses

the output of the detector. The intensity component then averages to zero, leaving only the correlated

signal. This technique of phase switching has many other applications in electronics and optics.

13.7 Two-Dimensional Angular Resolution

We have seen in Chapter 9 that coherence across a wavefront is related to the angular distribution of

the source of the radiation, so that a measurement of the coherence as a function of distance across a

Variable
delay

Multiplier

(a)

Signal input

Correlation output  Γ(τ)

Variable
delay

MultiplierPhase reversing Output polarity
reversal

Switch driver

switch

Signal input

Correlation output  Γ(τ)

(b)

Figure 13.4 Measuring the spectrum of an electrical signal by autocorrelation. (a) The detector measures the
product of the signal with the same signal delayed by a variable amount. (b) Phase switching: the correlated
component of the direct and delayed signals reverses in sign when the phase reverses
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wavefront gives the width and shape of the source. This applies in two dimensions; we now show that

a two-dimensional mutual coherence across a wavefront is directly related to the two-dimensional

angular distribution of radiance across the source. Exploring the coherence of the wavefront allows a

map to be drawn of the angular distribution of radiance across the source of the wavefront.

Suppose that the amplitude of the wavefront at a point in the x; y plane is Aðx; yÞ, and that at another
at a distance X; Y is Aðx þ X; y þ YÞ. There is no time delay between these samples of the wavefront,

so that the two-dimensional mutual coherence is

�ðX; YÞ ¼ hAðx þ X; y þ YÞA�ðx; yÞi: ð13:40Þ

From Section 13.5, the two-dimensional Fourier transform of this turns out to be the two-dimensional

distribution of radiance with angle. Put in simpler terms, this is the distribution of radiance giving rise

to the sampled interferometer outputs. The coherence �ðX;YÞ is complex; in circumstances where

phase as well as amplitude of the correlation can be measured the Fourier transform will give the

radiance distribution across the source without any assumptions about symmetry. The resolution in

angle is of the order of l=X and l=Y in the x and y directions.

This relationship is the basis of aperture synthesis in radio astronomy. At radio wavelengths,

typically of order 10 cm, it is difficult to obtain sufficient angular resolution by using a single radio

telescope. It is, however, straightforward to measure the correlation between radio waves received by

two or more telescopes separated by large distances (Figure 13.5), even up to some thousands of

kilometres (see very long baseline interferometry, Chapter 9). Through a succession of measurements

of the two-dimensional coherence using pairs of telescopes at various spacings and orientations a

b

b

b cos θ 
b sin θ

S

S

Correlation
detector

Delay b sin θ
c

Output

Figure 13.5 Aperture synthesis in radio astronomy. The interferometer 0s output is the complex degree of
coherence between the two radio telescopes, spaced a distance b apart, which together sample the transverse
coherence function. The source under observation may be at an angle y to the normal to the baseline, so that the
correct correlation requires one signal to be delayed by b sin y, and the effective baseline length is b cos y.
Observations at many baselines are combined and transformed to produce maps such as that of the radio galaxy M82
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sufficient map of �ðX; YÞ can be obtained. The phase of the correlation can be found by comparison

between coherence between different pairs. A map of complex correlation is constructed which, when

Fourier transformed, gives a map of the angular distribution of radio radiance (brightness) across the

source.

Radio interferometers using aperture synthesis may require a network of 10 or more radio telescopes

operating simultaneously, so that sufficient baselines are available for measuring the distribution of the

complex correlation. They can, however, be operated with baselines up to some thousands of

kilometres, using wavelengths of a few centimetres. Since the angular resolution of the resulting

source map is of order l=D, where D is the largest available baseline, it is possible by this method to

construct maps of radio brightness with resolutions down to 10�3 arcseconds. It is interesting to note

that this is several orders of magnitude better than the resolution of the largest optical telescopes, even

though the radio wavelength is four orders of magnitude larger than the optical wavelength. An

example is the map of the radio emission from the galaxy M82 in Plate 4.*

13.8 Irradiance Fluctuations: The Intensity Interferometer

In Chapter 9 we described the intensity6 interferometer used by Hanbury Brown and Twiss for

measuring very small angular diameters of stars, and in Chapter 12 we summarized its application to

the measurement of very narrow linewidths, namely �n � 1 kHz in photon correlation spectroscopy.

No explanation was given there as to why the intensity fluctuations observed at separated positions

should correlate but we can now see why it works in terms of the correlation analysis in Sections 13.2

and 13.4.

The first intensity interferometer in 1950 was set up by Hanbury Brown and Twiss using two 2.4m

diameter radio telescopes and was used to measure the diameter of the Sun and the angular diameters

of the Cassiopeia A and Cygnus A radio sources. Hanbury Brown and Twiss then set out to

demonstrate that interference could be detected in the intensity (irradiance) of light, as already

demonstrated for the intensity of radio waves, despite the fact that light was detected as a stream of

photons. Their initial optical experiment, shown in Figure 13.6, used a mercury lamp as a source and

measured the correlation of detected photons at two photomultiplier detectors. It was demonstrated

that intensity (irradiance) correlations could be measured by detecting individual photons, and that

this measurement could be used to determine coherence area or time for chaotic light.

The relation between Michelson’s stellar interferometer and the Hanbury Brown interferometer

(Chapter 9) may be seen qualitatively as follows. Each atomic emitter in a source gives rise to a finite

wavetrain of random phase. We can imagine a multiplicity of spherical waves spreading out from the

source. At any point P1 in space the amplitude at a particular time depends on how many wavetrains

are present and how their phases happen to be arranged. Sometimes favourable interference will take

place and the amplitude – and hence the intensity – will go up; sometimes destructive interference

will make it go down. In these rather oversimplified terms one can see that irradiance fluctuations

should exist. Now let us consider whether the fluctuations at another point P2 will be correlated with

6This interferometer was first developed by Hanbury Brown for radio astronomy, where the term intensity is used

for the radio equivalent of the radiometric optical quantity irradiance (or the photometric quantity illuminance), and

he continued this usage when he transferred into the optical domain. We follow this traditional usage.

*Plate 4 is located in the colour plate section, after page 246.

320 Chapter 13: Coherence and Correlation



those at P1. The same wavetrains reach P2 as reach P1: the only difference is in their relative phases

caused by the different paths they have travelled.

The condition for identical fluctuations at P1 and P2 is the same as that for interference at P1 and

P2: the relative phases of the wavetrains must be the same, which is to say that the waves are coherent

at P1 and P2. The phase condition has already been found in Section 9.11; it is

f0 �
l
d

ð13:41Þ

where f0 is the angular width of the source and d is the separation between P1 and P2. The discussion

can be put on a quantitative basis in terms of gð1ÞðtÞ and gð2ÞðtÞ, the first- and second-order degrees of

coherence.

Interference effects such as those occurring in the Young’s double slits arrangement and involving

two interfering electric field amplitudes may be quantified by gð1ÞðtÞ, the normalized first-order

degree of coherence, and are used to describe temporal and spatial coherence. Correlations in

irradiance (intensity) were defined in equations (13.27) and (13.28). As indicated in equations

(13.29) and (13.32) for chaotic light sources, the second-order degree of coherence gð2ÞðtÞ is related to
jgð1ÞðtÞj2. These equations may be generalized to include either (or both) time and spatial coherence:

gð2Þðt; rÞ ¼ 1þ jgð1Þðt; rÞj2: ð13:42Þ

Thus temporal or spatial coherence properties can also be measured by determination of gð2Þðt; rÞ.
The Hanbury Brown and Twiss effect is concerned with the fluctuations in intensity and their

correlations hIðtÞIðt þ tÞi=�I2. The effect has both a classical explanation arising from irradiance

fluctuations and a quantum theoretical explanation arising from fluctuations in photon count. It is an

illustration of the correspondence between the classical and quantum theories of light. However,

while here we will describe the classical approach, the quantum theory provides a more extensive

description and an explanation of other phenomena, such as photon anti-bunching, which cannot be

explained classically.

The fluctuations in the light beams are measured by a photodetector, usually a photomultiplier

giving a photoelectron current, and for low light levels this is carried out by the counting of detected

photons. The average rate of emission of photoelectrons is proportional to the instantaneous

irradiance. The origin of the fluctuations in the irradiance arises from two sources: from the light

beam itself and from the detection process. We look first at fluctuations in the light beam itself. The
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Figure 13.6 The original Hanbury Brown and Twiss experiment, using two photomultiplier detectors to
measure the correlation between two photon streams
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irradiance fluctuations of a thermal (chaotic) light source may be simulated by the superposition of

the independent radiation from many atoms. For emitters with amplitude an and phase fn which are

each independent from the others, the combined electric field for N emitters is then

E ¼
X

N

an exp½iðont þ fnÞ� ¼ E0 expðiotÞ: ð13:43Þ

The fluctuations in the electric fields of the chaotic waves lead to fluctuations in the irradiance

IðtÞ ¼ jE0ðtÞj2: The statistical fluctuation of the light wave irradiance I has a probability distribution

PðIÞdI ¼ ðI=�IÞ expðI=�IÞdI: ð13:44Þ

For a mean irradiance �I recorded in a time interval dt, the mean number of emitted electrons ¼
�n ¼ �IZdt=�ho. Here the quantum efficiency Z gives the probability of a photoelectron being emitted

following the detection of a photon.

The mean value �n depends on the mean irradiance �I, which is also fluctuating, and the time over

which the averaging is carried out. We can relate these times to the coherence time tG discussed in

Section 13.1. Averaging may be carried out over times long compared with the coherence time, t1 � tG,

and over times short compared with the coherence time, t2 � tG. The mean irradiance corresponding to

the short time will be different from the mean irradiance over the long time. There is a further

characteristic time involved which is the response time tp, of the detectors; this is required to be more

rapid than the fluctuations that are to be detected, otherwise the fluctuations are smoothed out.

The mean square fluctuation is then

½hIðtÞit2
� hIðtÞit1

�2 ¼ ½ð�IÞ2� ¼ ðI2 � �I2Þ ð13:45Þ

with I2 ¼
R

I2PðIÞdI ¼ 2�I2. We obtain that the mean square fluctuation is ð�IÞ2 ¼ �I2.
It is seen that in the emitted beam the short-term mean fluctuations occur about the long-term mean

and that these can be large, being equal to the mean irradiance.

In terms of photon counting the mean square fluctuation in photocounts is

ð�nÞ2 ¼ �n2: ð13:46Þ

A second source of fluctuation arises from the photon nature of the beam and the photoelectric

detection process. In the photoelectric detection a constant irradiance onto the detector gives

photoelectron emission pulses having a Poissonian statistical distribution. The probability of n

electrons being emitted in a certain time interval and with a mean number �n is

pðnÞ ¼ ð�nn=n!Þ expð��nÞ: ð13:47Þ

The variance or mean square fluctuation for the Poisson distribution is equal to its mean

hð�nÞ2it2
¼ hn2i � ð�nÞ2 ¼ �n: ð13:48Þ

The two sources of fluctuation, equations (13.46) and (13.48), can be combined by taking the sum

of their variances. The total variance in photoemission in a time t < tG for a chaotic light source

is then

ð�nÞ2 ¼ hðn � �nÞ2it1
¼ �n þ �n2: ð13:49Þ
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The positive term in �n2 for a chaotic source for times t < tG shows that the photoemissions have an

excess fluctuation or are correlated. The term in �n2 has an interpretation as a bunching of photons in

the beam.

The intensity interferometer takes the time average of the product of IðtÞ and Iðt þ tÞ which, as
seen in equation (13.32), is related to the square of the modulus of the mutual coherence between P1
and P2. A variation of the spacing of P1 and P2 thus allows g ð2Þ

12 ðtÞ to be measured over the lateral

coherence area of the source. As in the aperture synthesis discussed in the previous section, the source

radiance distribution must then be obtained by Fourier transformation of j�12j. This cannot be

achieved unambiguously without knowledge of the phase of �12, but it may be allowable to assume

that the source is symmetrical, giving a constant phase at all interferometer spacings. This is at least a

reasonable assumption when the diameter of a star is first measured. The optical intensity

interferometer was first used in 1956 at Jodrell Bank on the bright star Sirius. Figure 13.7 shows

the measured fall-off of g 2
12 with baseline increasing up to 9 metres. The angular diameter of Sirius is

known to be 7	 10�3 seconds of arc; a circular disc of this size would give the theoretical variation

of g212 shown in the figure, agreeing well with the observations. Notice that this account of the

intensity interferometer is a purely wave explanation. We presented in Chapter 12 a similar discussion

of the relation between the shape of a spectral line and intensity fluctuations on a time scale related to

the width of the line. In both cases consideration should be given to the photon nature of light. There

is no need for this if the flux of photons is large enough for a large number to arrive within a single

measurement time, but if the flux is small the random variations in photon count become important.

These appear as statistical fluctuations in intensity, and the correlator output becomes noisy. This does

not change the coherence and correlation, but it reduces the accuracy of the measurements.

Ultimately, when on average fewer than one photon is detected at each measurement the intensity

interferometer becomes practically impossible to operate.

Although two detectors were used in the original demonstration by Hanbury Brown and Twiss the

effect applies also to a single detector observing a single source. This is the arrangement used in the

photon correlation spectroscopy technique described in Chapter 12.

After the initial observations on radio astronomical sources Hanbury Brown and Twiss conducted

the optical experiments confirming the effect at visible frequencies. The experiments raised some
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Figure 13.7 Hanbury Brown and Twiss’s results for the variation of the normalized intensity (irradiance)
fluctuations with baseline for the star Sirius. The solid curve is the variation of �2

12 with d, calculated from an
assumed angular diameter of 0.0069 arcseconds. The optical system consisted of two searchlight mirrors 1.56m
in diameter and 0.65m focal length, capable of focussing the light from the star into an area 8mm in diameter. A
photomultiplier was mounted at the focus of each mirror and the anode currents were multiplied and integrated
to give �2

12
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controversy at the time that they were reported. It was questioned that if the photons emitted by the

thermal source were emitted at random, how could the signals received at the two detectors

be correlated? That is, how could the detection of a photon at one photomultiplier be correlated

with the detection of a different photon at the other photomultiplier? As we have remarked earlier,

the correlation in the two signals suggested that the photons arrive in pairs at the detectors, i.e. they

are bunched. This observation is supported by an explanation considering statistical fluctuations in a

system of bosons. Shortly after these observations a detailed quantum theory of coherence was

developed by R.J. Glauber for which he received the 2005 Nobel Prize for Physics, which gave a firm

explanation for the effect. In this regard the Hanbury Brown and Twiss effect has also made an

important contribution to the development of the subject of quantum optics.

13.9 Spatial Filtering

We have seen that the resolving power of instruments such as the telescope and microscope, and of

the Fourier transform spectrometer, is best understood by considering the range of Fourier

components which contribute to the output, whether it is an optical image or the shape of a spectral

line. This concept can be extended further to consider what happens if instead of a direct

reconstruction of the original light source we modify some of the Fourier components before

reconstruction. Such a process is familiar in communication engineering, where a signal may be

modified by a filter; for example, an unwanted oscillation might be removed by a narrow-band filter.

The directly analogous process in optics is spectral filtering in the Fourier transform spectrometer

(Chapter 12), where the output can be modified by adjusting the amplitude and phase of the measured

longitudinal correlation function. In this section we consider the modification of measured transverse

correlation functions, and its effects on an optical image. This is the process of spatial filtering, shown

schematically in Figure 13.8.

The first application of spatial filtering (although not then described as such) was to the

microscope, in Abbe’s theory of image formation. Consider the formation by a microscope objective

lens of an image of a grating-like object, illuminated by fully coherent light. In Figure 13.9 the

objective, shown as a single lens, collects light leaving the object over a wide range of angles. If we

consider this light as an angular spectrum of plane waves, we find that these components are focussed

on the focal plane F of the lens, which therefore contains the angular spectrum. The plane waves

continue beyond this focal plane, forming an image further away which is then examined by an

eyepiece; in this discussion, however, we are only concerned with the angular spectrum in the focal

plane F of the objective. How can this be modified, and with what effect on the final image?

As in all Fourier analysis, the finer detail is contained in the highest order components; if these are

lost, the resolution is reduced. An object which is a periodic grating will produce a series of

components S1; S2; . . . ; Sn; S�1; S�2; . . . ; S�n as shown in Figure 13.9. A purely sinusoidal grating

would produce only the two first-order components S1, S�1; a grating with sharp narrow lines will

Object O Spectrum S
Modified
spectrum

Modified
objectS′ O′

Fourier Spatial Fourier

transformfiltertransform

Figure 13.8 Spatial filtering. Light from the object O is Fourier transformed into the spectrum S. The spectral
components are modified by filtering, producing the spectrum S’, and an inverse Fourier transform produces the
reconstructed object O’

324 Chapter 13: Coherence and Correlation



produce a series of high-order components. If a mask is placed in the focal plane so that only the first-

order components are admitted to the rest of the microscope, a grating with any lineshape will be seen

in the image plane simply as a sinusoidal grating. The reason for the resolution limit is clear: the

objective must accept plane waves leaving the object over a sufficiently wide range of angles. If this

range is 
y, and the space between the grating and the objective has refractive index n, the finest

detail of the source that can appear in the final image has a size d ¼ l=n sin y. The spectrum in the

focal plane has a zero-order component at S0 in Figure 13.9, which may be very intense for a nearly

transparent object. This provides the first example of spatial filtering: the central zero-order

component can be removed by placing a simple mask in the focal plane. This provides dark-field

microscopy; an example is shown in Plate 5.*

A more subtle effect is obtained by changing the phase of the central component, by using a phase

filter, i.e. a transparent mask in which a central zone is thicker. Transparent objects then become

visible because of the pattern of phase changes which they impose on the light passing through them.

This is often important in biological specimens, which otherwise would have to be stained if they are

to be made visible in an ordinary microscope. Phase contrast microscopy was introduced by Zernike,

and is often named after him. Consider again a simple grating in the object plane (Figure 13.9), but a

phase-changing grating instead of an amplitude grating. The grating has no effect on the modulus of

an incident plane wave, but introduces a small phase shift which varies periodically across the object

plane. The diffraction pattern in the focal plane F then contains components S1; S2; . . . ; Sn; S�1;
S�2; . . . ; S�n as before, except that the components are in quadrature with the light at S0, as may be

seen by describing the complex amplitude in the object plane as

AðxÞ ¼ A0 exp if0 cos
2px

d

� �
: ð13:50Þ
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Figure 13.9 The Abbe theory of microscopy. The object is a grating, coherently illuminated. The diffraction
pattern in the focal plane F of the microscope objective is the Fourier transform of the complex amplitude across
the object; as the object is periodic, the resulting diffraction pattern comprises discrete components S0, S1,
S2,. . ., Sn, S�1, S�2,. . ., S�n

*Plate 5 is located in the colour plate section, after page 246.
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If f0 is small we may write this as

AðxÞ ¼ A0 1þ if0 cos
2px

d

� �
ð13:51Þ

and the wave has two components, one with the unchanging amplitude, the other in phase quadrature

(because of the i) and with an amplitude varying periodically across the aperture. These produce

respectively the central zero-order component S0 and the diffracted components S1, S�1, etc.

The idea of phase contrast microscopy is to retard the phase of the large undeviated component S0

by a quarter wavelength, so as to reproduce the diffraction pattern of an amplitude grating. This may

be achieved by inserting in the focal plane F a glass plate with an extra thickness in the central region,

so that the light at S0 is retarded by l=4 or 3l=4. In the first case regions of the object having greater

optical thickness will appear brighter, and in the second darker. These are called respectively bright

and dark, or positive and negative, phase contrast.7

The undeviated light at S0 forms an image of the light source. Instead of using a point source it is

convenient to use a ring source, as shown in the practical arrangement of Figure 13.10. The phase--

changing plate is then also in the form of a ring, which covers the image of the light source.

This arrangement allows a larger light source to be used, giving greater illumination in the image.

Objective

Object

Condensor

Auxiliary
condensor

Light
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P

To
eyepiece

R

Figure 13.10 Practical arrangement of a phase contrast microscope. The ring source of light R is focussed on
the phase contrast plate P, within the objective lens system. The undeviated light is retarded by the plate, while
light diffracted by the object passes through the thinner part of the plate and appears in quadrature in the final
image

7‘‘Bright phase contrast’’ should not be confused with conventional ‘‘bright-field microscopy’’.
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Problem 13.1
Calculate the transverse coherence length for sunlight and starlight at the surface of the Earth, given that the Sun

subtends an angle of 1
2

�
, while atmospheric scintillation spreads light from a star typically over 1

2
arcsecond.

Problem 13.2
Calculate the longitudinal coherence length for laser light with a bandwidth of 60MHz. What bandwidth �n and
linewidth �l would be required in a laser to produce a coherence length of 10 km?

Problem 13.3
An argon laser beam at a wavelength of 515 nm is repetitively chopped by a shutter to produce pulses of 10�10 s

duration. Calculate for the pulses: (a) the frequency bandwidth, (b) the wavelength spread, (c) the coherence

length.

Problem 13.4
The coherence length of a light source may be measured by determining its time autocorrelation function. A

correlator was used to measure the magnitude squared of the time autocorrelation function of a light wave having

a wavelength of 532 nm, and gave an exponential decay with a time constant of 60 ns. Estimate (a) the coherence

length of the source, (b) the power spectral density of the light.

Problem 13.5
A ‘cross’ type of radio telescope consists of two perpendicular strips of receiving area each with length D and

width d. (They may for example be large arrays of dipoles or parabolic reflectors.) The radio signals from these

two are multiplied together in a receiver which records only their product. What is the angular resolution of the

system?

Problem 13.6
The wavelength of a beam of particles, mass m and velocity v, is given by l ¼ h=mv, where h is Planck’s

constant. (i) Show that the wavelength for electrons accelerated by a field of V volts is approximately

1:23V�1=2 nm. (ii) Calculate the best possible resolving power of an electron microscope with numerical aperture

0.1 and accelerating field 30 000 volts.

Problem 13.7
A spectrograph used in radio astronomy is required to resolve the structure of the hydrogen spectral line at

1420MHz, as observed when a radio telescope is receiving radiation from several hydrogen gas clouds moving

with different speeds in the line of sight. The spectrograph divides the radio signal into two paths, inserting a

variable digital delay into one path, and then recombines them in a multiplier. The smallest increment of delay is

t and the largest total delay is Nt. If gas clouds with velocity differences between 10 km s�1 and 1000 km s�1 are

to be distinguished, what values of t and N are required?
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14 Holography

But soft! what light through yonder window breaks?

William Shakespeare, Romeo and Juliet.

If a scene is viewed through a window or any aperture large compared with the wavelength it is seen

as three dimensional and is completely lifelike. The scene changes as we alter our viewpoint: we

approach a window and look up through it to see an object in the sky. As the viewpoint alters, objects

in the scene show parallactic displacements relative to each other; if we move from left to right

nearby objects seem to move from right to left compared with more distant ones. Another effect is

that of being able to focus the eye on a particular object at a specific distance.

How different is this view through an aperture from a photograph of the same view! The

photograph may give an impression of depth, but it is only two dimensional. No parallactic

displacements of objects within it may be seen by a shift of viewpoint. The eye must be focused

on the plane of the photograph to see it, and no eye focusing can make sharp any part of the

photograph not originally brought into focus by the camera.

What is the information that has been lost in the photograph? According to the diffraction theory

which we have used in Chapter 10, the amplitude and phase of the light reaching any point on the

viewer’s side of the window can be deduced from the amplitude and phase of the light in the plane of

the aperture. The photograph, however, only records intensity, which is the square of the amplitude,

and not the phase. If we are to replace the window with a record of the wavefront, we must record its

phase as well as the amplitude. It is the complex amplitude in the aperture which must be recorded if

we wish to reconstruct, completely lifelike and indistinguishable from reality, the view through the

window.

In this chapter we show how holography enables us to record the complex amplitude over an

aperture, and so store all the information necessary to construct a three-dimensional image of the

original scene behind the aperture. Hence the term holography, from the Greek word holos meaning

whole.

Holography is achieved by combining the required object wavefront with a reference wave,

forming an interference pattern on a photographic plate or film. At any point, the recorded irradiance

depends on the relative phase of the object and reference waves. When the developed image, or

hologram, on the photographic plate is illuminated by the same reference wavefront, the light leaving

the hologram contains the original object wavefront, with both amplitude and phase. (It also contains
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other diffracted components, which we shall discuss later.) The original object cannot be seen in the

hologram itself, but information on the wavefronts which came from the object is coded within the

interference pattern. The object wavefronts can be reconstructed by re-illuminating the hologram.

14.1 Reconstructing a Plane Wave

We first explore the holographic process for the simple example of an object wave which is a single

plane wave. Any wavefront passing through the plane of any aperture can be regarded as an assembly

of elementary plane waves at various angles and with various amplitudes. We show how one of these

plane waves may be recorded by combining it with a reference wave, and how it may be

reconstructed. The object wave is incident at angle a, as shown in Figure 14.1(a). For simplicity

we choose a reference wave which is a plane wave at the complementary angle a. These two waves

are coherent, which requires them to be derived from the same source. The upper beam is the object

beam, which is to be recorded in the hologram, and the lower beam is a reference beam. These

crossing plane waves form an interference pattern in the aperture plane, which is recorded on the

photographic plate. This recording is a pattern of lines forming a diffraction grating; as in Figure 4.19,

the line spacing d is given by the familiar grating formula1

d ¼ l=2 sin a: ð14:1Þ

The developed plate contains a grating which ideally has a sinusoidal distribution of transparency;

it is then referred to as a sinusoidal diffraction grating (see Chapter 11, Problem 11.3). It is also a

simple hologram corresponding to an object with no structure. The amplitude transmittance of the

developed plate is proportional to the irradiance distribution on the plate. When the developed grating

is placed in its original position, illuminated by only one of the plane waves, which is the reference

beam, three diffracted beams are generated. Figure 14.1(b) shows the diffracted beams emerging from

the grating, labelled according to the order m of diffraction at the grating; the undeviated beam is at

m ¼ 0. The beam at m ¼ �1 is now a reconstruction of the object beam, travelling in the original

direction. As a check on the direction, following Section 11.2, note that for a beam to emerge at

angle y

sin y� sin a ¼ ml=d: ð14:2Þ

Since d ¼ l=2 sin a the beam must be at angle �a ¼ y as shown. The second beam, at m ¼ 1, gives

rise to an unwanted second image.

Reconstruction of the original object beam occurs for any angle of incidence of the reference wave,

provided that exactly the same reference wave is used in the reconstruction. Having reconstructed an

elementary plane wave, we now see that any plane wave will produce a grating pattern on the

photographic plate; the whole wavefront can therefore be recorded simultaneously and reproduced by

illuminating the grating with the reference beam. The reference beam itself may take almost any

form, provided that exactly the same beam is used in the reproduction; it need not even be a plane

wave, as we shall show in a more general analysis.

1More generally, crossing waves with equal amplitude and with wavevectors k1 and k2 give a pattern of field

irradiance I ¼ 2I0½1þ cosð�k � rÞ� where �k ¼ k1� k2.
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The holographic process is illustrated in another simple form in Figure 14.2, in which the object is a

single point. Here the photographic plate receives a coherent plane wave, which is the reference

beam, and light from the same wave scattered from the point object O. The reference and scattered

waves interfere to produce a circular holographic pattern on the plate, similar to a zone plate
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α

(a)

Reference wave

M=+1

α

Reference beam

(b)

M=–1

M=0

Figure 14.1 Holographic reconstruction of a plane wave: (a) two crossing plane waves form fringes on a
photographic plate; (b) diffraction at the sinusoidal fringe pattern illuminated by one of the beams. The first-
order diffracted beam is the holographic image of the other beam

14.1 Reconstructing a Plane Wave 331



(Figure 10.17). When the developed hologram is illuminated by the same plane wave, diffraction

creates a diverging primary spherical wave which appears to originate in a point source at the position

of O. As in most holograms, there is a second beam, which in this case converges towards the point P.

This is a conjugate beam and forms a real pseudoscopic image.2 The two images O and P are each at a

distance from the hologram equivalent to the focal length of the Fresnel zone plate which has been

formed by the interference pattern.

The light used for holography must be coherent over a large volume, which includes the object and

the photographic plate. This requires laser light both for illuminating the object and for the reference

beam. A typical arrangement is shown in Figure 14.3. Here a beam of laser light illuminates the

object through a beam splitter; one beam provides light which is reflected or scattered back from the

object to interfere with the other off-axis reference beam at the photographic plate. After deve-

lopment, the plate is a hologram; when it is placed in the same position and illuminated by the

reference beam in the same way, it shows a virtual image from behind the plate, as though the object

is being seen through a window. This is three-dimensional photography, achieved without a camera

lens!

14.2 Gabor’s Original Method

Dennis Gabor, the inventor of holography, was led to the idea through the problem of interpreting an

X-ray diffraction pattern from a crystal. Since the diffraction pattern was a Fourier transform of the

crystal structure, he was attempting to use the X-ray pattern as a diffraction grating in an optical

system, so producing the reverse Fourier transform which would be a visible image of the crystal

structure. As we noted in Section 11.11, the problem was that phase information had been lost in the

original diffraction process. Gabor’s idea was to add a reference beam, which would be very difficult

to achieve in X-rays, so he set out first to demonstrate the principle using light.

Coherent
light

Photographic plate Hologram

(a) (b)

P

Figure 14.2 Holography using plane wave illumination of a point object. The wave diverging from the point
object O interferes with the reference wave to form the hologram

2A pseudoscopic image is one that has its relief reversed (depth inversion), so that points of the object further

from the viewer appear closer, and vice versa.
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Figure 14.3 Recording and reproducing a holographic image. (a) The object and the photographic plate are
illuminated by the same source of light. Scattered light from the object combines with the reference beam to
form the hologram on the photographic plate. (b) The developed hologram is illuminated from behind by the
same laser beam, and a virtual image of the object is seen through the hologram exactly as it would appear
through an open aperture. (c) Projection of a real image. The hologram is illuminated by a reference beam which
is conjugate to the original



Gabor’s first demonstration of holography was in 1948, before the invention of the laser. Only a very

small-scale demonstration was possible because the coherence volume of ordinary monochromatic

light sources is so small. His original system is shown in Figure 14.4. A pinhole source of

monochromatic light illuminates a small opaque object (three narrow lines) on a transparent screen

close to the pinhole. A photographic plate behind the object records the irradiance of the diffracted

light. From the viewpoint of geometric optics the object would cast a shadow on the photographic

plate; what actually happens is that at each point of the plate interference occurs between the

undisturbed light wave and the transmission diffraction wave of the object. The undisturbed wave is

then the reference beam; this arrangement is termed in-line holography, because the reference beam

and object wave lie along one line.

The developed hologram (in which a positive transparency has been made from the photographic

negative) is illuminated through the same pinhole, using a lens or microscope to see the tiny object. A

primary beam diverges from the position of the original scattering object. The true three-dimension-

ality of the image was demonstrated by racking the focal plane of the microscope through different

layers of the holographic image.

Further movement of the microscope’s focal plane reveals the existence of a pseudoscopic second

image of the original object located behind the pinhole. This is inverted and has the property that each

point on it is the same distance from the pinhole as the corresponding point on the first image. This is

the second image discussed in the previous section. The reconstructed primary image in the Gabor

demonstration was degraded by the conjugate image which was superimposed on it, also by light

scattered from the directly transmitted beam. Off-axis holography, which we discuss later, provided

an answer to these difficulties.

14.3 Basic Holography Analysis

In recording a hologram, as in Figure 14.3(a), an object is illuminated by a laser beam, which on

reflection or scattering creates object wavefronts, and these are partially collected by a photographic

emulsion. Part of the laser beam is also used to illuminate the photographic emulsion directly, often

with the help of one or two mirrors, to create a reference wave.

(a) (b)
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Figure 14.4 Gabor’s original system of making a hologram and reconstructing the image. (a) The hologram is
recorded on a photographic plate. (b) The object is removed and the hologram is illuminated via the original
pinhole. The image and its pseudoscopic partner can be seen by looking through the hologram
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Let EOðx; y; tÞ and ERðx; y; tÞ be the complex amplitudes of the object wave and the reference wave

in the plane of the photographic plate (z ¼ 0):

EOðx; y; tÞ ¼ Aðx; yÞ exp½iðfðx; yÞ � otÞ�
ERðx; y; tÞ ¼ ARðx; yÞ exp½iðrðx; yÞ � otÞ� ¼ AR exp½iðk1x� otÞ�

ð14:3Þ

To illustrate the argument, we take the reference wave simply as a plane wave incident on the plate at

angle y in the x; y plane. Hence the spatial part of its phase reduces for z ¼ 0 to k1x, where

k1 ¼ 2p sin y=l, but its amplitude is constant. The object wave, however, may vary in a complicated

way.

Leaving aside an uninteresting constant of proportionality, the resultant irradiance at the plate is

Iðx; yÞ ¼ jERðx; yÞ þ EOðx; yÞj2

¼ jERj2 þ jEOj2 þ ERE
�
O þ EOE

�
R

¼ A2
R þ A2 þ 2AAR cos½fðx; yÞ � k1x�:

ð14:4Þ

Assuming a linear relation between the transmittance T of the hologram and the integrated irradiance,

the developed negative darkens according to

T ¼ T0 � KI: ð14:5Þ

Here T0 is the transmittance of the unexposed plate and the constant K is proportional to the

exposure time. (The photographic process and the response of the emulsion are described in detail in

Chapter 20.) The transmittance of the hologram is therefore

Tðx; yÞ ¼ T0 � KfA2
R þ A2 þ AAR exp½iðfðx; yÞ � k1xÞ� þ AAR exp½iðk1x� fðx; yÞÞ�g: ð14:6Þ

A2 and A2
R represent the irradiances of the two waves. Only the cross-terms, from their interference,

carry information about the phase of the object wave.

In the holographic reconstruction, or ‘‘readout’’, the developed plate is illuminated with a wave

identical to the reference wave. Leaving out the time dependence expð�iotÞ, the complex amplitude

of the transmitted wave is

Ereadðx; yÞ ¼ Tðx; yÞERðx; yÞ

¼ ½T0 � KA2
R � KAðx; yÞ2�ERðx; yÞ � KA2

REOðx; yÞ � KERðx; yÞ2EOðx; yÞ�:
ð14:7Þ

The three terms in square brackets correspond to the beam directly transmitted by the plate, and a

halo surrounding it. The fourth term is the one desired: aside from a constant multiplying factor, it is

identical to the original object wave and reconstructs a virtual image of the object. The last term, with

its complex-conjugate object wave, corresponds to a real image, which is usually unwanted. The extra

phase factor of exp½ið2k1xÞ� ¼ exp½ið4p sin yx=lÞ� multiplying the conjugate wave determines that it

will be separated from the object wave by roughly twice the incident angle of the reference beam.

Hence when the reference beam is off-axis by a large enough angle, the virtual image can be

separated from the conjugate image as well as from the direct beam.
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If a real image of the object is required, it can be reconstructed by illuminating the hologram with a

wave which is the conjugate of the reference beam. The conjugate wave is such that its complex

amplitude is the complex conjugate of the original wave. With illumination by the conjugate wave

E�
R, the transmitted amplitude is the same as in equation (14.7) but ER and EO are replaced by their

complex conjugates. The fourth term, which contains A2
RE

�
O, is proportional to the complex-conjugate

wave. This wave converges to a real image of the object; because of its reversed spatial phase, the

image produced is pseudoscopic, with inverted depth and modified parallax.

The essence of the process is that the recording of the hologram enables both the amplitude and the

phase of the object wavefront to be stored, even though the photographic plate only responds to

irradiance.

14.4 Holographic Recording: Off-axis Holography

A difficulty with the original Gabor on-line holographic method was that the virtual and real images

overlapped, leading to poor quality of the virtual image. The off-axis technique, which was deve-

loped starting in the 1960s by E. Leith and J. Upatnieks, overcomes that problem by separating the

images.

In equation (14.7) the final term corresponding to the conjugate real image has depth which is

inverted, so that the real image is pseudoscopic (whereas the virtual image is orthoscopic). The

primary and conjugate images are separated from each other and from the directly transmitted beam,

ensuring no overlap between the beams.

Changes in phase difference between the reference and object beams, e.g. arising from mechanical

or acoustic disturbances, need to be minimized during the exposure. The arrangement would

normally be mounted on an anti-vibration table.

The two forms of holography illustrated in Figures 14.3 and 14.2 are related to the two categories

of diffraction, Fraunhofer and Fresnel, which we distinguished in Chapter 10. When the recording

photographic plate is in the near field a Fresnel hologram is formed with the wavefronts from the

object being closely spherical. The real and virtual images on the illuminated Fresnel hologram are

positioned on either side of the hologram. A Fraunhofer hologram is formed when the distance

between the object and the plate is large, in which case the object wavefronts are nearly planar.

14.5 Aspect Effects

When the reconstructed object is viewed through a hologram the edges of the hologram act rather like

a window frame. Within the limits set by the frame movement of viewpoint changes the aspect of the

reconstructed scene, so that if it is three dimensional one can see more of the image to the right by

moving the head to the left and vice versa. Similarly, parallactic displacements of different elements

of the scene may be observed.

A consideration of these aspect effects brings out another interesting property of a hologram. From

a given direction of observation light reaching the eye from the image only comes from a small

portion of the hologram determined by the position of the eye and the angle subtended by the object

as shown in Figure 14.5. Evidently if all the rest were removed leaving only this piece the object

could still be seen, but only from that aspect. Thus if a hologram is broken into fragments, the

reconstructed object can still be seen through each fragment, as seen from the appropriate aspect. This
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is rather like looking through a window that is completely obscured except for a small hole. The view

is still to be seen, but only from the viewing position allowed by the hole.

It is inherent in the holographic process that the many different elements of a scene can all be

recorded on the same small area of a hologram. Figure 14.5 shows this effect for two separate objects,

which can be seen separately from two different aspects. A remarkable and very important extension

of this property is the superposition of two or more separate holograms on the same photographic

plate, using different reference beams for each object or scene. Any individual object can then be

reconstructed and seen by using the appropriate reference in the reconstruction.

A limitation of normal holograms is that they can only be viewed over a limited range of angles.

Wide angle or full 360� viewing can be made by extending the range of angles that the photographic

film subtends, e.g. the object can be surrounded by a photographic film and illuminated from above

or below. A very large amount of information can evidently be stored on a hologram. Extension of

the holographic principle to three dimensions expands the possibilities even further; we discuss

in Section 14.12 the use of three-dimensional holographic memories for data storage and computing.

14.6 Types of Hologram

The holograms discussed so far are recorded as developed photographic negatives which are then

used as transmission gratings. They have an inherent disadvantage of low efficiency in the brightness

of the reconstructed image, since light must be lost in the grating. The amplitude hologram may,

however, be converted into a phase hologram, in which the hologram grating operates by changing

the phase of the light wave instead of its amplitude. This is achieved by storing the interference

pattern as a corresponding distribution of refractive index changes within the recording film, and

bleaching out the developed amplitude hologram. For silver halide photographic plates the deposited

silver metal can be converted into a transparent silver compound, with a refractive index which is

different from the gelatin base of the emulsion. In the wave reconstruction, the phase of the wave is

altered in proportion to the exposure energy forming the interference pattern.

Holographic reconstruction in which a change of phase is induced can equally well be achieved by

reflection, as in Figure 14.6. This is particularly important for phase holography, since a modulation

of phase can be achieved by a corrugation of the reflecting surface, using a photoresist material.

These organic materials are sensitive to light intensity, and after development a photoresist film yields

One hologram

Reconstruction
of two objects

Two viewpoints

Figure 14.5 To see a reconstructed object from one aspect, only a small portion of a hologram is used. The same
portion viewed from another angle allows a different reconstruction (or a different part of the same one) to be seen
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a relief surface whose corrugations provide the phase changes in a reflected wavefront. A major

advantage is the ease of replication, since the surface can easily be replicated in a press, using

thermoplastic materials. The replication process begins by the making of a stamper in which the relief

image recorded on the photoresist is overplated with a layer of nickel by electrodeposition. The nickel

layer is separated from the master hologram and put on a metal backing plate. The surface relief of

the stamper is transferred in a heated embossing press onto a thermoplastic film. A reflection layer of

aluminium is vacuum deposited on the film for subsequent illumination. This is the basis of the

familiar holographic logos and icons impressed into bank cards and the like. (But we have yet to

explain how these are usefully viewed in white light; see Sections 14.7 and 14.9 below.)

We have so far introduced four categories of holograms (amplitude and phase transmission, and

amplitude and phase reflection), as two-dimensional recordings on a surface. There is a further

distinction for amplitude and phase holograms depending on whether the recording medium is thin or

thick. Photographic films many wavelengths thick can store a three-dimensional interference pattern;

as we see in the following sections this presents additional possibilities in colour holography and in

high-density data storage. Holograms can also be distinguished by the angle between the object beam

and the reference beam (Figure 14.7). For a thin hologram where the angle is small (a few degrees),

Figure 14.6 Arrangement for recording a reflection hologram

(c)(b)(a)

q

q

Figure 14.7 Variation of fringe spacing with illumination angle. (a) Thin hologram, small y, fringe spacing
large compared with emulsion thickness. (b) Thick hologram, intermediate y, fringe spacing small compared with
emulsion thickness. (c) Reflection hologram; the fringes are nearly parallel to the surface of the emulsion
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the fringe spacing is about the same size as the emulsion thickness (typically 5–15 mm). Diffraction

by a thin hologram is described by the diffraction equation. For a larger angle between the object and

reference beam, the fringe spacing is small compared with the emulsion thickness.

A Fourier hologram can be formed by interference between the Fourier transforms of the complex

amplitude of the object and reference waves (Figure 14.8). The reconstructed image of the Fourier
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Direct beam

Primary image
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Photographic
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Figure 14.8 Fourier hologram: (a) recording; (b) image reconstruction; (c) recording without a lens
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hologram does not move when the hologram is translated sideways. Arrangements to record a Fourier

hologram and reconstruct from it are shown in Figure 14.8(a) and (b), together with an alternative

lensless arrangement (c). The Fourier hologram technique is used in spatial filters and in pattern

recognition.

14.7 Holography in Colour

A disadvantage of the methods described above is that both the recording and reconstruction

processes demand monochromatic light, usually from a laser, both for recording and for reconstruc-

tion. Reconstructions seen through such holograms are in bright red, or whatever monochromatic

laser light is used; the three-dimensional and aspect effects have been gained at the expense of

unreality of colour. If white light is used to illuminate such a hologram no reconstruction is seen at

all, as an infinite number of overlapping and different-sized images are produced by each wavelength

present.

One approach to colour holography is to record three holograms simultaneously, e.g. as volume

reflection holograms, using three differently coloured lasers, each with its own reference beams.

Reconstruction then needs the same three reference beams; each produces its own set of unwanted

beams as well as the required image, but in practice the system is too complicated for common use.

A three-colour hologram may also be illuminated with white light, out of which wavelength bands

at the three reference wavelengths are selected by Bragg reflection for reproduction. This technique is

based on the historic work of Lippmann in 1891 (Section 4.6) and of Bragg in 1912 (Section 11.11). It

will be recalled that Lippmann demonstrated the existence of standing waves close to a reflecting

surface by showing that a thick photographic emulsion on top of a mirror was darkened in layers

corresponding to maxima of the interference pattern between the direct and reflected waves. Such a

plate serves as a selective reflector of light of the wavelength in which it was made, for only at that

wavelength do the reflections from the different layers in depth add constructively. Similarly, Bragg’s

work on crystals shows how a three-dimensional structure can single out a particular direction or

directions and reflect a monochromatic beam to it selectively. This effect was the basis of Lippmann’s

process of colour photography.

The holograms we have considered so far have been essentially flat two- dimensional patterns. To

make a three-dimensional hologram with sufficient structure in depth two main changes are

necessary. First, a thick emulsion (up to a few millimetres, much thicker than the fringe spacing)

is used for making the hologram; throughout its depth the film is transparent except where it has been

blackened by an interference maximum during exposure. Second, the angle between the reference

beam and the scattered light from the object is made large (Figure 14.7(c)). In the most extreme case

of this the angle is made almost 180�, so that the scattered light and the reference beam arrive at the

photographic plate from opposite sides. In equation (14.1) the angle a becomes 90� and an

interference structure of the order of l=2 in depth is produced, with interference fringes parallel to

the emulsion surface. The hologram is reconstructed in reflection rather than transmission.

Such holograms when illuminated by diffused white light from say a tungsten filament or quartz

halogen lamp will only transmit light of the right colour which is going in the appropriate direction.

To produce exact full-colour holograms, it is necessary to illuminate the object with red, green and

blue light from three separate lasers, three corresponding reference beams being used. However, when

illuminated with an ordinary white light source this hologram produces a realistic three-dimensional

coloured reconstruction. This is called a reflection or white light hologram. The planes of the

interference fringes act like Bragg planes in X-ray crystal diffraction and select the reflected
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wavelength. A practical technique to record the hologram is to use part of the beam transmitted by the

photographic emulsion to illuminate the object.

14.8 The Rainbow Hologram

The familiar holograms impressed on plastic surfaces work passably well in white light, although

they are only two dimensional and cannot use the Bragg reflection principle. The rainbow hologram is

a transmission hologram which reconstructs a bright, sharp monochromatic image when illuminated

with white light. This is achieved at the cost of some loss of function. When looking at such a

hologram, a sideways movement of the viewpoint shows the normal parallax effect of a

three-dimensional image, but a movement up and down does not; instead the colour of the image

changes, as though the eye is exploring across the colours of a rainbow. One dimension of geometric

reality has been sacrificed and replaced by a colour dispersion.

Although reproducing such holograms is a simple matter of impressing a pattern on a plastic

surface, the initial construction is complex and involves two stages of holography. Figure 14.9 shows

the two processes. In the first stage a normal hologram is made, as in (a), and then illuminated by the

reference beam from the opposite side, as in (b), so producing a real image.

A screen with a narrow horizontal slit about 1 cm long is then placed over the hologram as in (c), so

that the vertical extent of the hologram is insufficient to give a parallax effect in the vertical direction.

The second stage of recording (d) is made with a photographic plate located close to the real image,

and illuminated by a new reference beam which is inclined in the vertical plane. This second

reference beam is shown in (d) converging on a focus which will be the position of the white light

source in the reconstruction. (These two steps may be combined into one in a more complex system.)

Finally, the photographic amplitude hologram must be converted into a surface phase hologram

suitable for bulk reproduction.

When the hologram is viewed with illumination by a monochromatic source, as in Figure 14.10, the

two steps produce two images, one of the object and the other of the slit. The vertical position of the slit

image is wavelength dependent, with the effect that a vertical movement of the eye traverses a

‘‘rainbow’’ spectrum, so that the colour of the object depends on the eye position. The images formed

by the rainbow hologram are bright since all the light falling on the hologram is used to form the image.

14.9 Holography of Moving Objects

Here we come to another interesting technical challenge in holography. The process of forming the

hologram depends on the phase differences between the reference beam and the scattered light from

the object remaining constant within a few degrees during the exposure. Clearly the object must not

move more than a fraction of a wavelength. Any larger movement will not just cause blurring of the

reconstruction; there will be nothing to reconstruct. A consideration of a simple case is helpful.

Suppose we were making a diffraction grating by allowing two coherent beams of light to meet at an

angle and interfere at a photographic plate. Then obviously a movement of a wavelength or so of the

source of one of the beams would move the interference fringes on the photographic plate so we

would get no grating at all. The solution is to use a very short exposure time.

Happily lasers, which are universal source of light for holographic recording, can produce

astonishingly short pulses. It is instructive to calculate how short an exposure is needed. If we
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Figure 14.9 Steps in the production of a rainbow hologram. (a) Recording the primary hologram.
(b) Projecting the real image. (c) Real image with no vertical parallax. (d) Recording the final hologram
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take it that for human scenes we need to record objects moving at up to 10m s�1 the exposure must be

so short that movement of only l=10 (say) happens in that time. If l ¼ 5� 10�7m the exposure must

last only for 5� 10�9s; 5 nanoseconds is a short time for conventional photography: light itself only

moves 1.5m in that time. A laser pulse can, however, be much shorter than 1 nanosecond (the shortest

is less than a femtosecond), and repetitive pulses are easily obtained. A series of separate holograms

can often resolve fine details of an object’s motion, but in the next section we turn to a more powerful

method of detecting movement.

14.10 Holographic Interferometry

The sensitivity of holography to small movements can be turned to advantage in measuring small

physical displacements within an object, due for example to vibration, thermal expansion, distortion

or stress. In the reconstruction of a holographic image the object is normally removed. If instead it is

replaced in the same position it will appear superposed on its image, so that light from any point will

originate from the laser and reach the eye by two routes, directly and via the hologram. These will

interfere, so revealing any movement of the object between the recording and the reconstruction. In

Figure 14.10 Rainbow hologram: image reconstruction. (a) Reconstruction with a laser source.
(b) Reconstruction with a white light source
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this way holographic interferometry can measure displacements or distortions of objects within a

small fraction of a wavelength. Alternatively, in double exposure holographic interferometry two

holograms are recorded on the same photographic plate, e.g. without stress and then under stress. The

superposition of the two holograms will create fringes if the dimensions or position of the object have

changed between the two exposures. An example is shown in Figure 14.11.

The conversion of the phase difference between the two light waves into visible interference

fringes can be followed using the notation of Section 14.3. In the first and second exposures on the

photographic plate the irradiances are

I1ðx; yÞ ¼ jE0 þ ERj2
I2ðx; yÞ ¼ jE0

0 þ ERj2:
ð14:8Þ

The amplitude transmittance of the hologram is

Tðx; yÞ ¼ T0 � KðI1 þ I2Þ: ð14:9Þ

When the hologram is illuminated with the same reference beam, the transmitted amplitude of the

hologram is

Ereadðx; yÞ ¼ ERðx; yÞTðx; yÞ: ð14:10Þ

Figure 14.11 Holographic interferometry of a human torso, showing surface movement due to the action of the
beating heart. The movement in 70ms is recorded by superposing two holographic exposures. (Hans Bjelkhagen,
De Montfort University)
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Retaining only the term which corresponds to the superimposed primary images, this has a

complex amplitude

Ereadðx; yÞ ¼ KTE2
RjE0ðx; yÞj½expð�ifÞ þ expð�if0Þ�: ð14:11Þ

The resultant irradiance is

Iðx; yÞ / jE0ðx; yÞj2f1þ cos½fðx; yÞ � f0ðx; yÞ�g: ð14:12Þ

The movement of the object between the two exposures has been recorded as the phase change

�fðx; yÞ ¼ fðx; yÞ � f0ðx; yÞ. Then a bright fringe is observed whenever �fðx; yÞ ¼ p:2p, where p

is an integer. The two interfering waves are reconstructed in exact register with each other, so that the

positioning of the doubly exposed hologram is not critical. Since the two waves have the same

amplitude the fringes have high visibility.

Dynamic effects, such as small but rapid vibrations of mechanical components, can be followed by

an electronic TV camera rather than a photographic plate. The object beam is imaged onto the camera

detector, together with a reference beam from the same laser source. These combine to form a speckle

pattern (see Chapter 16) which can be scanned and recorded at 25 frames per second or even faster.

Any small movement of the object is immediately obvious as a movement of the speckles. This

technique is known as electronic speckle pattern interferometry.

14.11 Holographic Optical Elements

Holographic optical elements (HOE) are optical components produced using holographic techniques.

Diffraction gratings made by the holographic technique of interfering two laser beams in a

photographic emulsion may be a simple amplitude grating in a thin film of emulsion, or they may

be three dimensional, using a thick emulsion; they may also be phase-changing rather than amplitude

gratings. More generally, a hologram may be regarded as an optical component which will modify a

light wavefront in ways which are usually associated with conventional components such as lenses,

spatial filters, beam splitters and optical connections used in microelectronic systems.

The three-dimensional grating made by interfering two plane waves behaves like a crystal in X-ray

diffraction. The interference pattern in the film is a regular lattice; transmission through or reflection

from the hologram follows Bragg’s law. If instead one of the beams is diverging, the resulting grating

will behave as a lens, since the reconstructed beam is a copy of the original beam. A plane laser beam

will be focussed to a spot. Movement of the hologram causes the spot to be scanned; this is the basis

of the holographic scanner. The barcode scanner used in shops uses a mosaic of such holograms with

different orientations formed on a circular disc, providing a multiple scan pattern when the disc is

rotated and with each scan line focussed to a different position in space.

Holographic optical elements have several valuable advantages over bulk optical components.

They can be made with large aperture on thin, light substrates and several elements can be made on

the same hologram. Synthetic computer-generated holograms are able to be produced which can

produce wavefronts with any required amplitude and phase distribution. In analogy to the off-axis

holographic recording, the complex amplitudes of an object wave and a reference wave are computed,

superimposed and the resultant square modulus calculated. This is then used to produce a

transparency to act as a hologram. Holographic video imaging is being developed in which

computer-generated holograms are able to produce real-time holographic three-dimensional displays.
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14.12 Holographic Data Storage

A holographic image stored in a thick recording medium (a volume image) may be reconstructed by a

laser beam at the same angle as the reference beam used in the recording. At this angle the condition

for Bragg reflection is satisfied, but at other angles no reconstruction takes place. This allows many

holograms to be superposed in the same volume of recording medium, each able to be accessed by its

own particular reference beam angle, or by its own wavelength at a particular angle. A very large

amount of information can be stored in this way, which is the basis of holographic data storage and

holographic memories.

A high-capacity holographic memory must be transparent through many wavelengths’ thickness of

recording medium. This makes an amplitude grating unsuitable, and phase grating techniques must be

used. Phase grating volume holograms are based on photorefractive crystals or polymers, in which the

refractive index is altered by a pattern of space charge formed by photoexcited electrons. The process

is reversible; the grating may be erased by illuminating the grating uniformly, so that the same

material can be used as an optically rewritable memory. The potential performance is phenomenal:

data may be stored at a density of 1011 cm�3 (100Gbit cm�3) and may be accessed in less than 100

microseconds, or transferred at a rate of 109 bit s�1. Further developments have been made to make

volume holograms of the display type which produce large-scale (l m� 1m) images, in full colour

and with full parallax.

Problem 14.1
The plane wave beam from an He–Ne laser (l ¼ 633 nm) is split into two beams which symmetrically illuminate

a photographic plate. A hologram is recorded when the object and reference beams make angles of þ30� and

�30� with the normal to the photographic plate. Calculate the spatial frequency (i.e. the inverse of the spatial

wavelength) of the fringes.

Problem 14.2
The depth of modulation (or visibility) of holographic fringes is defined in terms of the maximum and minimum

irradiances Imax and Imin on the photographic plate as ðImax � IminÞ=ðImax þ IminÞ. For reference and object

wave irradiances IR and IO, determine the depth of modulation for the cases: (a) IR ¼ 2IO, (b) IR ¼ 4IO and

(c) IR ¼ 10IO. Comment on the suitable values for IR=IO.

Problem 14.3
The resolution of a photographic plate or film Rp is a measure of the finest fringes that can be recorded, e.g. in

units of lines per mm. Deduce in off-axis holography the largest angle that can be recorded by a film with

resolution Rp.

Problem 14.4
The photographic emulsion is not linear in its response under conditions of low and high irradiances, as indicated

by the characteristic response curve (the HD curve; see Section 20.7). How may the effects of this factor be

minimized in holographic recording?

Problem 14.5
In a thick hologram the interference fringes exist throughout the thickness of the emulsion. In reconstruction

a diffracted wave may then interact with more than one fringe. Consider a holographic arrangement in which

the object and reference waves are incident at equal angles onto the holographic plate. Show that a condition

for the plate to act as a thick plate is when the emulsion thickness l is such that l > 2nd2=l, where n is
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the emulsion refractive index and d is the spacing of fringes formed between the object and reference

waves.

Problem 14.6
In a holographic arrangement an object is centred perpendicular to the recording film, at which it subtends an

angle y. The film receives light from all points in the object, which then interfere at the film. (a) What is the

smallest fringe spacing (highest spatial frequency) for this arrangement? (b) The film is illuminated by a

reference beam at an angle of f. In reconstruction with the original reference beam, what value of f in recording

is required to avoid overlap of the object beam and the reconstruction waves?

Problem 14.7
In holography the reconstructed real image is pseudoscopic; for example, the structure in an object will appear

with depth inverted. Explain this effect, and suggest a method to enable the real image to be observed as an

orthoscopic (i.e. non-pseudoscopic) image.
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15 Lasers

. . .there are certain situations in which the peculiarities of quantum mechanics can come out in a special way on

a large scale.

The Feynman Lectures on Physics, vol. III, p. 21–1.

Lasers, the outcome of elegant physical theory and extensive experimentation, have become a vitally

important tool in contemporary research in physics and chemistry, and indeed in all branches of

science. Lasers are also used extensively in everyday life, from reading barcodes to playing CD

recordings, and in technology, where they have many diverse uses such as optical communication and

processing materials, and for many types of measurement.

In this chapter we set out the fundamentals of laser action.1 The laser produces light in a

significantly different way from normal light sources. The essential process of stimulated emission is

considered along with absorption and spontaneous emission. This leads to the Einstein relations

between the rate coefficients for these processes. The creation of population inversion is seen to

produce optical gain. In most lasers the laser medium is inside an optical resonator to enhance gain

by providing a long path length. We look at some of the properties of these resonators and their

influence on the laser radiation they emit.

We describe some of the main types of laser, leaving the all-important semiconductor lasers to a

separate chapter. The many types of laser have similar operating principles of population inversion,

gain, feedback and threshold, but they differ greatly in their characteristics. Many lasers are table-top

size, others are the size of a large room or a building, while the semiconductor laser has submillimetre

dimensions. The special characteristics of laser light, such as monochromaticity and directionality,

which depend on its high degree of coherence, will be described in Chapter 16, which also deals with

the tuning of lasers, the conversion of the wavelength of laser light by non-linear optical techniques

and the generation of laser pulses of ultrashort duration.

15.1 Stimulated Emission

Before the invention of the laser, the available sources of light were essentially either thermal, such as

from a tungsten filament lamp, or spontaneous emission from atoms and molecules, as in a gas

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd

1The acronym laser stands for Light Amplification by Stimulated Emission of Radiation.



discharge; in either case, their brightness was limited by the temperature of the emitter. The

broadband white light of solar radiation, for example, is limited in brightness by the temperature

of the photosphere, while the brightness of the solar spectral lines is limited by the ambient gas

temperature in the chromosphere or corona. Light from a thermal source is incoherent; it is the

chaotic sum of a disorderly outpouring of photons from individual atoms, radiating at random without

any relation to one another. In a laser, however, the emission from individual atoms is synchronized,

giving coherent radiation with very much higher brightness. Stimulated emission, a concept

introduced by Einstein in 1916, is the source of the synchronization.

The first use of stimulated emission to achieve a high brightness was in the microwave spectrum;

historically the maser was developed several years before the laser. In 1953 Gordon, Zeiger and

Townes2 demonstrated stimulated emission between the two lowest levels of the ammonia molecule,

giving a very narrow emission line at a wavelength of 12.6 millimetres. For this achievement, Townes

shared the 1964 Nobel Prize in Physics with N. Basov and A. Prokhorov of the USSR. The first laser,

originally called the optical maser, followed in 1960, when T. H. Maiman produced red light at

wavelength 694.3 nm from the chromium ions in a ruby crystal. Stimulated emission in the maser and

laser is the essential effect causing emission from excited atoms of coherent radiation that adds

precisely in phase and with the same direction and polarization. Three components are needed to

achieve this in a laser (Figure 15.1): an active medium with suitable energy levels, the injection of

energy so as to provide an excess of atoms in an excited state, and (in most cases) a resonator system

in which multiple reflections allow the build-up of the coherent laser light.

We have already introduced in Section 1.7 the three elemental quantum processes of light–matter

interaction: absorption, spontaneous emission and stimulated emission. All three play a role in the

laser. Consider, for example, the three-level laser shown in Figure 15.2. Here the atoms in the active

medium have three energy levels involved in the laser action. Absorption raises the energy from level

1 to level 3 (this process is called pumping), spontaneous emission (or a non-radiative transition)

reduces the energy to level 2, which is a metastable state, and stimulated emission occurs between

levels 2 and 1. The accumulation of excited atoms in the metastable state results in an overpopulation,

or population inversion, in relation to the ground state. Stimulated emission leads to the rapid release

of this accumulated energy; one photon arrives at the excited atom, and two leave, with the same

energy, travelling together and in phase. The stimulated photon has the same momentum as the

incident photon, and hence travels in the same direction. Both photons can then repeat the process at

other excited atoms, and the resulting chain reaction causes the light wave to grow exponentially.

Laser lightAmplifying medium

Resonator
mirrors

M1 M2

Pump

Figure 15.1 The basic elements of a laser: amplifying medium, pumping energy source and resonator M1M2

2J.P. Gordon, H.J. Zeiger and C.H. Townes, Physical Review, 95, 282, 1954.
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The ruby laser is an example of a three-level laser in which the active species is the Cr3þ ion rather

than a neutral atom.

One further element is needed to make such an amplifier into a self-excited oscillator; the light

must be fed back into the laser material. This is achieved by enclosing the lasing material between

mirrors, forming a resonant cavity. Emission from the device is obtained by arranging that one of the

resonator mirrors has a non-zero transmittance.

15.2 Pumping: The Energy Source

As shown in Figure 15.2 the energy which is converted into laser light is injected, or pumped, into the

laser at a higher photon energy hn31 than the laser output photons with energy hn21. The excited atoms

(or ions) then lose energy hn32, falling into the intermediate level 2 which has a longer lifetime.

Atoms accumulate in this metastable state, and are available for the stimulated emission process.

The original ruby laser was pumped by an intense flash of white light, which is selectively absorbed

by chromium ions dispersed through the aluminium oxide crystal. Only a small part of the energy in the

white light is at the right wavelength to be absorbed and produce the population inversion; this is

inefficient, which is the reason for the use of an intense source of light. Other types of laser use more

finely tuned pumping systems; the very common He–Ne gas laser provides a good example.

The He–Ne laser contains a mixture of the two gases in an electrical discharge tube. Both gases are

excited and ionized in the discharge. The amplifying medium is neon, which is pumped into a state of

population inversion by collision with excited helium atoms; these in turn have been energized by

electron collisions in the discharge. The energy transfer between the two species of gas atoms is very

efficient because of a close coincidence between energy levels in the excited helium and the upper

levels suited for the laser action in neon. Figure 15.3 shows the outline of the He–Ne laser, and the

energy levels involved. The coincidence is between the two metastable levels 21S0 and 23S1 in helium

and the two metastable levels 5s and 4s in neon.3 Stimulated emission from the 5s and 4s levels can be

Energy
levels

Short lifetime

Long lifetime

Laser transition

Population

1

2

3

Figure 15.2 Energy levels and the level populations in a three-level laser

3The He levels are described by Russell–Saunders coupling, while for Ne the levels are designated by their

electron configuration as (1s22s22p5)3s, ( )4s, ( )5s, etc.; note that in the older Paschen notation the ( )3s

configuration is designated 1s and ( )4s is designated 2s, and so on.
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through transitions to several different energy levels, allowing laser action at 3.39 mm, 1.15 mm,

632.8 nm and 543.5 nm. The familiar red beam of the He–Ne laser is operating on the 632.8 nm

transition. Figure 15.3 shows the mirrors which enclose the laser, forming a resonator. As will appear

later, a particular laser wavelength can then be selected by a choice of resonator system.

15.3 Absorption and Emission of Radiation

We now review the basic theory of the three processes involved in the interaction of radiation and

matter, which we introduced briefly in Section 1.7. The processes of absorption, spontaneous

emission and stimulated emission are sketched in Figure 15.4. We suppose that the two states,

with energies E1 and E2, are populated with number densities n1 and n2. Absorption occurs when

radiation of frequency n ¼ ðE2 � E1Þ=h is incident on the medium, with excitation from the ground

state to the excited state. The rate of absorption in which atoms are raised from level 1 to level 2 is

dn1

dt

� �
ab

¼ �B12n1uðnÞ ð15:1Þ
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Figure 15.3 The helium–neon laser. (a) Laser excited by a d.c. electrical discharge, with potential V. (b)
Simplified energy level diagram
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where n1 is the population per unit volume in level 1 and uðnÞ is the energy density of the incident

field (units of energy per unit volume per unit frequency interval, J m�3 Hz�1Þ. uðnÞ is a function of

the frequency n of the radiation field. B12 is the Einstein absorption coefficient, which is a constant

characteristic of the pair of energy levels in the particular type of atom.

Spontaneous emission of a photon occurs with transition of the electron from the excited level 2 to

the ground level 1 with the emitted photon energy hn ¼ E2 � E1. The rate of decrease of the

population n2 by spontaneous emission is

� dn2

dt

� �
spon

¼ A21n2: ð15:2Þ

The constant A21 (unit: s�1) is related to the spontaneous radiative lifetime t of the excited state as

A21 ¼ 1

t
: ð15:3Þ

In stimulated emission atoms in level 2 are stimulated to make a transition to level 1 by the

radiation field itself. The rate at which the transition occurs is proportional to the number of atoms in

level 2 and the energy density of the radiation field:

dn2

dt

� �
stim

¼ �B21n2uðnÞ: ð15:4Þ

The constant B21 is the Einstein coefficient for stimulated emission from energy level 2 to level 1.

Note that the rate of stimulated emission is proportional to the energy density at the resonant

frequency n ¼ ðE1 � E2Þ=h, so that for high levels of radiation energy density stimulated emission

dominates spontaneous emission.

The rate of change of population in level 2 is the sum of the effects of spontaneous and stimulated

transitions given by equations (15.1), (15.2) and (15.4), which yields the rate equation

dn2

dt
¼ �B21uðnÞn2 þ B12uðnÞn1 � A21n2: ð15:5Þ

Conservation of atoms implies that the ground-state population density obeys dn1=dt ¼ �dn2=dt.

The relation between the three Einstein coefficients is found by considering an equilibrium

situation, where a collection of atoms within a cavity is in thermal equilibrium with a radiation field.

Then the populations of the two levels n1 and n2 are constant

dn2

dt
¼ dn1

dt
¼ 0: ð15:6Þ

11

222

1

(a) (b) (c)

Figure 15.4 Absorption, spontaneous emission and stimulated emission
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In thermal equilibrium, when there is detailed balancing between the processes acting to populate and

depopulate the energy levels, setting dn2=dt ¼ 0 we obtain

A21n2 þ B21uðnÞn2 ¼ B12uðnÞn1 ð15:7Þ

giving the relation between the values of n1; n2 and uðnÞ at thermal equilibrium.

We now use two fundamental laws relating uðnÞ and the relative populations n1; n2 to the

temperature T. These are Planck’s radiation law for cavity radiation (Section 5.7)

uðnÞ ¼ 8phn3

c3

1

expðhn=kTÞ � 1
ð15:8Þ

and the Boltzmann distribution of atoms between the two energy levels:

n2

n1

¼ g2

g1

exp �E2 � E1

kT

� �
¼ g2

g1

exp � hn
kT

� �
: ð15:9Þ

Here we have allowed for the possibility that either level is degenerate, i.e. that for the jth level, there

are gjð¼ 1; 2; 3:::Þ quantum states with the same energy (gj ¼ 1 is the non-degenerate case). From

equations (15.7) and (15.9)

uðnÞ ¼ A21

B12ðn1=n2Þ � B21

ð15:10Þ

or

uðnÞ ¼ A21

B12ðg1=g2Þ expðhn=kTÞ � B21

: ð15:11Þ

This equation may be combined with equation (15.8) to give

A21

ðg1=g2ÞB12 expðhn=kTÞ � B21

¼ 8phn3

c3

1

expðhn=kTÞ � 1

� �
: ð15:12Þ

Equation (15.12) is satisfied when

A21

B21

¼ 8phn3

c3

g1B12 ¼ g2B21:

These are the required relations between the three Einstein coefficients (see also Problem 15.3).

These equations and the concept of transition probability are fundamental to the theory of

exchange of energy between matter and radiation.

The crucial factor for lasers is the ratio between the rates of stimulated and spontaneous emission:

rate of stimulated emissions

rate of spontaneous emissions
¼ B21uðnÞ

A21

¼ 1

ðexpðhn=kTÞ � 1Þ : ð15:15Þ

For lasing to be feasible, this ratio should be much greater than 1. In that case, stimulated emission

dominates spontaneous emission, and the latter is less able to erode away a population inversion

before lasing can occur.

(15.13)

(15.14)
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Example. Assuming thermal equilibrium at room temperature (T ¼ 300 K), evaluate the ratio of

equation (15.15) for l ¼ 600 nm (visible) and l ¼ 1 cm (microwave).

Solution. In general, if T ¼ 300 K, and we measure l in mm, ½expðhn=kTÞ � 1��1 ¼
½expð48=lmmÞ � 1��1

. Hence

stimulated rate

spontaneous rate
� expð�80Þ ’ 10�35 ðl ¼ 0:6 mmÞ ð15:16Þ

and 200 at l ¼ 1 cm.

The factor exp ðhn=kTÞ shows us that in thermal equilibrium stimulated emission is very unlikely at

optical frequencies, and explains why the first successful device was the maser, operating at a much

lower radio frequency. It is not surprising then to learn that all lasers developed until now operate with

radiation that is far from thermal equilibrium.

We also note that since the stimulated emission rate is n2B21uðnÞ we may increase the rate by

increasing uðnÞ, which is achieved in a resonant cavity, and by increasing n2 in the population

inversion resulting from pumping.

15.4 Laser Gain

We can now consider the growth of a light wave as it passes through an active laser medium, and find

the conditions for the wave to grow by stimulated emission. The resulting fractional rate of growth, in

equation (15.25) below, depends on four factors: the population inversion, the spectral lineshape, the

frequency and the transition probability A21. We start by finding the emission and absorption in a

small element dz of the path through the laser medium, and then integrating over the whole path,

which may involve many to-and-fro reflections in a resonator.

First we look at the attenuation of an absorbing medium in which a plane wave of monochromatic

radiation is travelling as illustrated in Figure 15.5. The reduction in irradiance (power flow across unit

area) as the wave travels from position z to zþ dz for a uniform medium is proportional to the

magnitude of the irradiance and the distance travelled:

dIðzÞ ¼ Iðzþ dzÞ � IðzÞ ¼ �aIðzÞdz: ð15:17Þ

I(z) I(z+dz)

z z+dz

Figure 15.5 Attenuation of a wave in a slab of material
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Here a is the absorption coefficient. Hence

dIðzÞ
dz

¼ �aI: ð15:18Þ

On integration

IðzÞ ¼ I0 expð�azÞ; ð15:19Þ

where I0 is the irradiance of the incident beam. This represents exponential attenuation.

If the number of stimulated emissions exceeds the number of absorptions, rather than being

attenuated the wave will grow. The number of stimulated emissions depends on the energy density

uðnÞ. The irradiance is the product of the energy density and the velocity, so that in free space or a

thin gas

uðnÞ ¼ I

c
: ð15:20Þ

The change in irradiance dI of the wave in travelling a distance dz is now proportional to the

difference between the numbers of stimulated emissions and absorptions:

dI ¼ n2B21gðnÞ
I

c
� n1B12gðnÞ

I

c

� �
hndz: ð15:21Þ

Here we have introduced the normalized spectral function, or lineshape gðnÞ for the transition,

which describes the frequency spectrum of the spontaneously emitted radiation. The lineshape is

dependent on the mechanism determining the broadening of the transition, as described in Chapter 12

and Appendix 4. In gas lasers inhomogeneous broadening usually dominates due to the thermal

motion of the atoms o+ ions. Inhomogeneous broadening also applies to transitions in doped glasses

where variations in the sites of the doped ions lead to a distribution of centre frequencies. A typical

inhomogeneously broadened lineshape is shown in Figure 15.6.

The normalization of the function gðnÞ is such that

Z 1

0

gðnÞdn ¼ 1: ð15:22Þ

FWHM

Frequency v

g(v)

v0

Figure 15.6 A typical inhomogeneously broadened Gaussian lineshape function gðnÞ showing the full width at
half maximum (FWHM)
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From equation (15.21), and the Einstein relations (15.13) and (15.14),

dI

dz
¼ n2 �

g2

g1

n1

� �
c2A21

8pn2
gðnÞI: ð15:23Þ

Integrating gives an exponential dependence on distance z

I ¼ I0 expðgðnÞzÞ ð15:24Þ

where I0 is the irradiance at z = 0, and gðnÞ is the gain coefficient:

gðnÞ ¼ n2 �
g2

g1

n1

� �
c2A21

8pn2
gðnÞ: ð15:25Þ

If n2 > ðg2=g1Þn1, representing population inversion, then gðnÞ > 0, and the irradiance grows

exponentially with distance in the medium. The gain coefficient depends, as expected, on the

transition probability A21 and on the lineshape. Note, however, that the frequency dependence ðn�2)

indicates it is more difficult to make lasers for ultraviolet light than for infrared.

In comparing the suitability of different laser media it is convenient to specify a stimulated

emission cross-section parameter sðnÞ, which is related to the gain coefficient gðnÞ by

gðnÞ ¼ n2 �
g2

g1

n1

� �
sðnÞ: ð15:26Þ

From equation (15.25)

sðnÞ ¼ c2A21gðnÞ
8pn2

: ð15:27Þ

Since the lineshape gðnÞ is normalized (equation (15.22)), the central height of the line gðn0Þ is

inversely proportional to the linewidth,4 and to a useful approximation gðn0Þ � 1=�n. For the

lineshape of homogeneous broadening (see Section 12.2 and Appendix 4)

gðn0Þ ¼
2

p�n
: ð15:28Þ

Then the cross-section parameter at the peak frequency becomes

s0 ¼ sðn0Þ ¼
c2A21

4p2n2
0�n

: ð15:29Þ

This shows that the stimulated emission cross-section for a homogeneously broadened transition is

proportional to the ratio A21=�n, the spontaneous transition rate over the linewidth. (In liquid and

solid state lasers the higher refractive index n of the medium compared with a gas means that the light

speed c should be replaced by c=n.)

4The linewidth here is the full width at half maximum, or FWHM.
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15.5 Population Inversion

The population inversion condition n2 > ðg2=g1Þn1 derived in Section 15.4 is a necessary condition

for the gain coefficient to be positive. The two cases of thermal equilibrium and population inversion

are shown in Figure 15.7.

To create population inversion, energy is required to be put selectively into the laser medium such

that the population of level 2 is increased over level 1 to form a non-equilibrium distribution.

Excitation of the laser medium by pumping may be achieved in several ways. In gases at normal

pressures, the absorption lines have a narrow bandwidth, which limits their ability to absorb light, and

pumping is usually by electron collisions in an electrical discharge. Solid state crystals and glasses

doped with an active ion have broader absorption lines than gases and are usually excited optically by

absorption of energy from a lamp or from another laser. In semiconductor lasers (Chapter 17),

the relevant energy levels correspond to the conduction and valence bands, which are comparatively

very broad. Here pumping is achieved by applying an electric field across the semiconductor

junction.

Lasers may conveniently be divided into three- and four-level systems depending on the number of

levels active in their operation. This is illustrated in Figure 15.8 which shows the inverted population

at the laser transition.

15.6 Threshold Gain Coefficient

Laser oscillation is initiated in a system with population inversion by the spontaneous emission of a

photon along the axis of the laser. For the laser to sustain oscillation the gain in the laser medium

must be greater than the losses in the cavity. The losses arise from transmission at the cavity mirrors

(in order to provide the laser output, a typical transmission is 5% for continuous laser operation).

Other losses arise from absorption and scattering by the mirrors and in the laser medium, and

diffraction out of the sides of the cavity. The threshold for laser oscillation will occur when the gain is

equal to the losses. To calculate this threshold gain we combine all the sources of loss into one

E2

n2

E1

Population

(a)

n1

E2

n2

E1

Population

(b)

n1

Figure 15.7 Population inversion. The normal Boltzmann distribution (a) of population in two energy levels is
shown inverted in (b). (Here we assume g2=g1 ¼ 1)
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lumped loss coefficient k. At threshold the irradiance neither decreases nor increases; it stays

constant.

Consider a cavity made up of mirrors M1 and M2 with reflectances R1 and R2 and spaced by a

distance L. A beam of irradiance I0 starting at M1 on reaching M2 has become I1 ¼ I0 exp½ðg� kÞL�,
where g and k are the gain and loss coefficients. On reflection from M2 and travelling in return

through the medium and undergoing reflection at M1, the irradiance becomes

I2 ¼ I0R1R2 exp½2ðg� kÞL�. The round-trip gain, G, is defined as I2=I0. Then

G ¼ I2=I0 ¼ R1R2 exp½2ðg� kÞL�: ð15:30Þ

The threshold condition for laser oscillation is G ¼ 1, giving

R1R2 exp½2ðgth � kÞL� ¼ 1 ð15:31Þ

where gth is the threshold gain coefficient, at which the laser will begin to oscillate.

From equation (15.31) we find

gth ¼ k þ 1

2L
ln

1

R1R2

� �
: ð15:32Þ

The first term is the loss within the cavity, and the second term is the loss due to the mirror

transmission (or absorption), i.e. including that leading to the useful laser output.

Continuously operating lasers are called CW lasers, standing for continuous wave. Once a CW

laser is operating in a steady state, the gain stabilizes at the threshold value, since if the gain were

greater or less than unity the irradiance would increase or decrease. The level at which the irradiance

stabilizes depends on the pump power.
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Figure 15.8 Three- and four-level laser schemes
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15.7 Laser Resonators

Most lasers require a long path through the active medium to obtain sufficient overall gain. This is

achieved by multiple reflections in an optical resonator, often referred to as a resonant cavity.

An optical resonator both increases laser action and defines the frequency at which it occurs.

Optical feedback is provided by the optical resonator which retains photons inside the cavity,

reflecting them back and forth through the laser medium. The simplest basic optical resonator is a pair

of shaped mirrors at each end of the laser medium, as in a Fabry–Pérot interferometer. There are

various configurations using plane and curved mirrors used in optical Fabry–Pérot resonators; some

of these are shown in Figure 15.9. Not all configurations of mirror curvatures and spacings will give

stable operation. Usually one of the mirrors is arranged to be practically 100% reflecting at the laser

wavelength; the other mirror (the output mirror) has a finite transmission, so that light will be

transmitted out of the optical cavity to provide the laser output.

The optical Fabry–Pérot resonator made up of two plane-parallel mirrors is similar to the

Fabry–Pérot etalon or interferometer described in Chapter 8. The resonance condition for waves at

normal incidence, along the axis of a cavity with optical length L, as for standing waves, is

m
l
2
¼ L ð15:33Þ

where m is an integer. Then the resonant frequency nm for each longitudinal mode of the cavity is

nm ¼ m
c

2L
: ð15:34Þ

This equation is important in defining the resonant frequencies at which the laser will oscillate, as

it will if they fall within the gain profile of the laser transition, as illustrated in Figure 15.10.

The possible oscillating frequencies are termed the longitudinal modes of the laser; they are spaced by

�n ¼ c

2L
: ð15:35Þ

Each of these frequencies may, however, be broken into a more narrowly spaced set; these are due to

transverse modes, in which the field pattern may have different structures transverse to the beam

Plane parallel

M1 M2

r1 = r2 = ∞

r1 = r2  >> L

r1 = r2  = L

r1 = ∞, r2 = L

L

Long radius

Hemispherical

Confocal

Figure 15.9 Common laser resonator configurations. r1 and r2 are the radii of curvature of mirrors M1 and M2
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direction. A transverse mode is an electric and magnetic field configuration at some position in the

laser cavity which, on propagating one round trip in the cavity, returns to that position with the same

pattern; some of these field patterns are shown in Figure 15.11.

The laser output is at one or more frequencies from this set of modes. When only one longitudinal

and transverse mode is selected, in a single mode laser (Chapter 16), the bandwidth of the laser

light is almost unbelievably small. For comparison, light from a single line of a low-pressure

gas discharge lamp has a spectral width of about 1000 MHz. Non-pulsed laser light in contrast typically

has a bandwidth of less than 1 MHz and may, with careful design, have a bandwidth of less than 10 Hz.

As can be seen in Figure 15.11, the transverse modes can have polar (or circular)5 symmetry or

Cartesian (rectangular) symmetry; these are known respectively as Laguerre–Gaussian modes and

(a)

(b)

(c)

v

v
∆v

vm

Gain

Gain

profile

Loss

Figure 15.10 Gain profile and resonant frequencies in a cavity laser: (a) gain profile of the laser transition;
(b) allowed resonances of the Fabry–Pérot cavity; (c) oscillating laser frequencies

HG1,0
LG 10

LG 50

LG 31

LG 33

HG5,0

HG3,1

HG3,3

Figure 15.11 Distribution of irradiance for various transverse modes: Hermite–Gaussian (HG), where the
double subscript refers to the number of nodes in the x and y directions, and the corresponding Laguerre–
Gaussian (LG), where the superscript and subscript refer to cycles of azimuthal phase and the number of radial
nodes respectively.

5In three dimensions, the LG modes are actually helical and carry angular momentum.
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Hermite–Gaussian modes. Although most lasers are constructed with circular symmetry, the modes

with Cartesian symmetry are most common; this arises when some element in the laser cavity

imposes a preferred direction on the transverse electric and magnetic field vectors. The lowest order

transverse electromagnetic mode (HG00 or LG0
0) is labelled TEM00. This is the fundamental mode

with the largest scale pattern across the laser beam. The zero subscripts indicate that there are no

nodes in the x and y directions, transverse to the direction of the laser beam.

The cavity mirrors are, of course, required to reflect at the laser wavelength in order to make the

cavity resonant. Typically one mirror has a reflectivity as close to 100% as possible and one is

arranged to have a carefully selected transmission, chosen to produce the optimum laser output

power; this necessarily means that the transmission must be less than the overall laser gain. For

efficient operation the deviations of the mirrors from their ideal shapes are required to be within a

small fraction of the laser wavelength (usually � l=20).

15.8 Beam Irradiance and Divergence

The beam of light leaving the laser is coherent in relation to both its narrow spectral linewidth and its

spatial coherence over its emitted wavefront. As it leaves the laser, the beam will spread into a narrow

angle by diffraction, the width depending on the field distribution across the beam. This can be

viewed as the beam’s cross-section acting as its own diffraction aperture. The simplest mode (the

TEM00 mode), which has the narrowest beam, has a Gaussian radial dependence of irradiance Iðr; zÞ
with peak irradiance along the axis, so that at radial distance r from the axis

Iðr; zÞ ¼ I0 exp
�2r2

w2ðzÞ

� �
: ð15:36Þ

The radial width parameter w is referred to as a spot size and varies with distance along the axis.

(For r ¼ w the amplitude is 1=e of the amplitude on-axis, but for convenience this is often referred

to as the edge of the beam.) The spot size is smallest within the laser cavity, where there is a

beam waist. Here the width w0 (Figure 15.12) is related to the length L of the resonator and the

wavelength l as

w0 ¼ lL
2p

� �1=2

: ð15:37Þ

This applies for both the cavity with two plane mirrors and the symmetric confocal cavity. As we discuss

below, the cavity mirrors must be significantly larger than this spot size to avoid diffraction loss.

2w0 2w

L

z

Figure 15.12 The beamwidth w0 at the waist and at a distance z from the waist
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The laser beam spreads by diffraction (Figure 15.12) both inside and outside the resonator. Analysis

of the Gaussian beam solutions of the paraxial wave equation leads to the width wðzÞ of the beam at

distance z from the beam waist:

wðzÞ ¼ w0 1 þ lz
pw2

0

� �2
" #1=2

ð15:38Þ

which approximates to

wðzÞ ’ lz
pw0

for z � pw2
0

l
: ð15:39Þ

Note that the larger the beam waist, the smaller the angle of spread of the beam. For the TEM00

mode, which has a Gaussian spatial profile, the half angle y of the divergence cone for the

propagating beam is

y ¼ l
pw0

: ð15:40Þ

As expected from Fraunhofer diffraction, the angular width is of order l=w0. For example, an He–Ne

laser with l ¼ 632:8 nm operating with a symmetric confocal resonator of length L ¼ 30 cm has

minimum spot radius w0 ¼ lL
2p

� �1=2

¼ 0:17 mm ð15:41Þ

divergence angle y ’ l
pw0

’ 1:2 mrad ¼ 0:066�: ð15:42Þ

Note that the beamwidth w0 is determined by the length and not the width of the laser. There is,

however, a need for the resonator mirrors to be sufficiently wide, so that the beam is not lost by

diffraction at each reflection. For example, consider the diffraction broadening of a beam that arrives

at mirror M2 after it reflects off M1. Assuming initially that the beam fills mirror M1, the diffraction

half angle at mirror M1 is � l=d1 where d1 is the diameter of the mirror M1 and also of the beam at

M1. If d2 is the diameter of M2, low loss requires d2 � d1 þ 2Ll=d1, or approximately

d1d2

lL
> 1: ð15:43Þ

This is known as the Fresnel condition. For a symmetrical arrangement where d1 ¼ d2 ¼ d the

condition is d2=lL > 1; the quantity d2=lL is known as the Fresnel number of the optical

arrangement. (Note the close relationship to the Rayleigh distance (Section 10.4), which defines

the boundary between Fraunhofer and Fresnel diffraction.)

The beam remains almost parallel for some distance from the laser. In equation (15.38) the width is

almost constant for distances z � 1
2
z0, where z0 ¼ pw2

0=l defines the Rayleigh range, i.e. the distance

over which a laser beam is effectively collimated. For example, a red-light beam from a laser with

1 mm aperture remains parallel for about 5 m. A longer but wider parallel beam can be achieved by

using a beam expander, which is a telescope system used in reverse (Figure 16.3). This effectively

gives a larger coherent wavefront than the laser aperture alone. A survey theodolite with a 25 mm

aperture would have a parallel beam over a distance of 3 km. Over longer distances the beam
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expander achieves a smaller angular spread than the laser alone. Given an optical system accurate to a

fraction of a wavelength, and in the absence of atmospheric turbulence, a very narrow beam can be

generated. A telescope with 1 m diameter aperture can transmit a laser beam with a divergence less

than 1/2 arcsecond; this would illuminate a spot only 1 km across on the Moon.

15.9 Examples of Important Laser Systems

15.9.1 Gas Lasers

Gas lasers may be divided into several types, depending on the active amplifying species in the gas

and the excitation mechanism. The wide range of gas lasers is summarized in Table 15.1. The

wavelengths of gas lasers cover a very broad range from the vacuum UV to the far IR, in continuous

wave and pulsed operation, and with some lasers operating up to high powers. A mixture of gases is

often used in gas lasers to enable excitation by energy transfer between the components or to enhance

their operation. There are many different pumping mechanisms, including continuous, pulsed or radio

frequency electrical discharges, optical pumping, chemical reactions and intense excitation in

plasmas. The laser emission may be from electronic transitions in neutral atoms (e.g. the He–Ne

laser) or ionized atoms (e.g. Arþor Krþ), electronic transitions in molecules (e.g. F2 or N2), electronic

Table 15.1 Examples of gas lasers

Typical power

Laser type Wavelength (nm) or pulse energy Pulsed or CW

Neutral atom

He–Ne 632.8 1–50 mW CW

Cu 511, 578 20 mW Pulsed

Ion

Arþ 488, 515 2–20 W CW

Krþ 647 1 W CW

He–Cd 441.6, 325.0 50–200 mW CW

Molecular

CO2 10.6 mm 102–104 W CW, pulsed

N2 337.1 10 mJ Pulsed

F2 157 10 mJ Pulsed

HCN 336.8 mm 1 mW CW

CH3F 496 mm 1 mW CW

Excimer

ArF 193 mJ, kHz Pulsed

KrF 248 mJ, kHz Pulsed

XeCl 308 mJ, kHz Pulsed

XeF 351, 353 mJ, kHz Pulsed

Chemical

HF 2.6–3.3 mm CW to kW CW, pulsed

I 1.3 mm CW to kW CW, pulsed

Pulsed mJ to J

Plasma

Se24þ, Ar8þ, etc. 3.5–47 nJ to mJ, ns Pulsed
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transitions in transient excited dimer molecules (termed excimers, e.g. KrF or ArF), and vibrational or

rotational transitions in molecules (e.g. CO2, CH3F).

Generally gas lasers are excited by an electrical discharge in which excitation of the gas atoms,

ions or molecules is by collision with energetic electrons. Optical excitation of a gas is usually

inappropriate since the absorption lines of gases are very narrow (in contrast to solids).

The He–Ne laser described briefly in Section 15.2 was the first gas laser to be operated (in 1960),

and was the first continuously operating laser. It is still one of the most common lasers, operating on

the 632.8 nm wavelength, and is used in many applications requiring a relatively low-power, visible,

continuous and stable beam.

The CO2 gas laser provides large power outputs at the infrared wavelength of 10.6 mm. The laser

action involves four vibrational energy levels, as in the scheme of Figure 15.13. The broad highest

level is closely equal to an excited level in nitrogen, which is an essential added gas component.

The upper level of the CO2 molecule is populated from this state by collisions with nitrogen

molecules. The excitation of the nitrogen molecules is by electron collisions, and the electrons are

produced in an electric or radio frequency discharge within the laser tube. The gas also contains

helium, which assists the depletion of the lower levels by collisional de-excitation and stabilizes the

plasma temperature. Large continuous power outputs, up to some tens of kilowatts, are obtainable;

pulsed operation can give pulse energies of joules in microsecond pulses. As the gas densities are

usually comparatively low, high-powered CO2 lasers must be relatively large to contain a sufficient

number of molecules.

Regarding the rare optical pumping of gas lasers, two exceptions of interest are the atomic iodine

photodissociation laser and the neutral atomic mercury laser. The iodine laser is pumped by an

intense flashlamp, whose light dissociates a molecule such as CF3I to produce iodine atoms in the first

electronic excited state, and stimulated emission is on the magnetic dipole transition 2P1=2–2P3=2 at

1.3 mm. The iodine 1.3 mm laser may also be pumped by a chemical reaction in which excited

molecular oxygen, formed in a reaction between hydrogen peroxide and chlorine, transfers energy to

atomic iodine. The mercury laser operates continuously on the strong Hg 546.1 nm transition pumped

by a powerful mercury lamp.

Gain at X-ray wavelengths over 3 to 47 nm has been demonstrated from highly ionized atoms.

These pulsed lasers operate in a dense plasma pumped by nanosecond laser pulses or electrical

discharges. Nanosecond X-ray pulses of up to 1 mJ energy (equivalent to megawatt powers) have

been produced.

Figure 15.13 Vibrational energy levels in the CO2 laser
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15.9.2 Solid State Lasers

A solid state laser, such as the ruby laser, may be in the simple form of a transparent rod with mirrors

formed directly on the ends. The gain medium contains a paramagnetic ion in a host crystalline solid or

glass. The active ion may be substituted into the crystal lattice or may be doped as an impurity into the

glass host. There are many combinations of dopant ion and host materials which provide a wide range

of laser wavelengths. The doped solids exhibit broad absorption bands which make them amenable to

optical excitation from continuous or pulsed lamps or from semiconductor diode lasers. A listing of

some of the more common doped crystal solid state lasers6 is given in Table 15.2, and also includes

some doped glasses where the active laser medium is a bulk glass or the central core of an optical fibre.

The dopant ion should fit readily into the crystal host by matching the size and valency of the

element that it is replacing. The optical quality of the doped medium needs to be high so that there is

low loss for the amplifying beam. Refractive index variations, scattering centres and absorption can

contribute to loss processes. Suitable host media are garnets (complex oxides), sapphire (Al2O3),

aluminates and fluorides. The glass hosts are easily fabricated, in large sizes and with high optical

quality. The energy levels are broader in glasses than in crystals, making them more suitable for

pumping by flashlamps. The lower thermal conductivity of glasses compared with crystals renders

them susceptible to thermal distortion and induced birefringence. The increased linewidth leads to a

reduced stimulated emission cross-section (Section 15.4) such that the pumping threshold is higher.

Although pulsed and CW operation are used with various crystal hosts, pulsed operation is necessary

for a glass host, especially at high power levels.

The paramagnetic dopant ions are usually from the transition metals and lanthanide rare earths.

The Nd:YAG laser operating at 1064 nm is one of the most used solid state lasers; here neodymium

ions Nd3þ provide the laser action, and yttrium aluminium garnet (YAG) is the usual crystal host.

The crystal has a relatively high thermal conductivity which enables it to distribute heat efficiently

following optical pumping. The laser can operate either pulsed or continuously.

Table 15.2 Examples of solid state crystal, glass and fibre lasers

Laser Wavelength (nm) Operation

Crystal host

Ruby: Cr3þ:Al2O3 694.3 Pulsed

Garnet: Nd:YAG 1064 CW or pulsed

Vanadate: Nd:YVO4 1064 CW

Titanium sapphire: Ti:Al2O3 670–1070 CW or pulsed

Glass

Silicate, Nd 1064 Pulsed

Phosphate, Nd 1054 Pulsed

Fibre host

Er-silica 1500–1600 CW

Er-fluoride 2700 CW

Yb-silica 970–1040 CW

Tm-silica 1700–2015 CW or pulsed

6The common name for the crystal is given, with the dopant (e.g. Cr3þ) and host medium (e.g. Al2O3).

366 Chapter 15: Lasers



Semiconductor lasers, which are dealt with in Chapter 17, are derived from light-emitting diodes.

They are distinct from the solid state lasers such as the ruby laser in their pumping and photon

generating processes, deriving their energy from the electrical excitation of electrons within the

semiconductor and emitting radiation with photon energy approximately equal to the bandgap energy.

The titanium–sapphire laser (Ti3þ ions doped into sapphire, Al2O3) has assumed much importance

as it is tunable over a wide band of 670 to 1070 nm and produces CW powers up to 50 W depending

on the pump power; it can also be mode locked (described in Chapter 16) to produce femtosecond

pulses. The titanium–sapphire crystal has a broad optical absorption band between 400 and 600 nm

and is optically excited, usually by another laser such as the argon ion laser or the frequency-doubled

Nd:YAG laser. The broad emission band of width �l � 400 nm has a peak wavelength near 800 nm.

The lower (2T2) and upper laser (2E) levels, shown in Figure 15.14, are composed of overlapping

vibrational–rotational (termed vibronic) levels. The simple energy level structure, in which there are

no states with energy levels above the upper laser level, avoids excited state absorption from the upper

laser level, which in some solid state lasers reduces the efficiency and tuning range. Non-radiative

relaxation in the upper and lower laser levels acts to maintain population inversion.

Optical fibres in which the central core is doped with a rare earth ion, such as Er3þ or Yb3þ, can act as

an efficient laser. The pump light may be fed in either from one end or from the side and is then trapped

in the fibre together with the stimulated wave, thereby ensuring strong coupling between the pump and

laser beams. An example of a fibre laser is shown in Plate 6.* The operating wavelength of the erbium-

doped silica glass fibre at 1.54mm has a value which qualifies it for use as the erbium-doped fibre

amplifier (EDFA) in optical communications. The Yb-doped silica-fibre laser operating at 1.05mm has

high efficiency, and in a double-clad configuration produces output powers up to 1 kW. The double-clad

fibre structure has a second concentric cladding with a diameter of typically 400mm into which pump

power can be efficiently coupled and that power is then transferred into the narrow fibre core as the light

travels down the fibre.

Laser emissionPumping

Upper laser level

Lower laser level

Non-radiative
transitions

vibronic transitions

E

T

Energy

2

2

2

Figure 15.14 Simplified energy level diagram of titanium-doped sapphire. Absorption and laser emission bands
and non-radiative transitions are shown

*Plate 6 is located in the colour plate section, after page 246.
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Efficient and compact solid state lasers can be made using pumping by high-power semiconductor

diode lasers (described in Chapter 17). Semiconductor diode lasers with high powers have been

developed with wavelengths which match the absorption wavelengths of doped solids. As an

example, the 1.064 mm Nd:YAG laser is able to be pumped by the 808 nm GaAs diode laser, with

substantially reduced heating of the crystal compared with broadband pumping by flashlamps,

thereby conferring on it improved laser efficiency and greater optical beam quality of the laser output.

The Nd:YVO4 vanadate crystal also pumped by the 808 nm laser diode has a greater gain coefficient

than the Nd:YAG crystal and is more tolerant of cavity losses.

15.9.3 Liquid Lasers

The major liquid lasers employ organic molecules in solution as their amplifying medium. The

characteristic absorption and emission spectra of organic molecules derive from their molecular structure

of a backbone of carbon atoms with conjugated double bonds; this provides a set of p-state electrons

(p electrons) with wavefunctions spread over the molecule. The electronic energy states of the molecule

are determined by the p electrons and have a set of singlet (total spin zero) and triplet (total spin unity)

states. Each electronic state has associated vibrational and rotational modes which form a continuous

energy band. These molecules have broad absorption and fluorescence bands. Fluorescence transitions

between singlet levels are allowed dipole transitions, so that the excited singlet states have nanosecond

lifetimes, and emit often with high efficiency. Triplet–singlet transitions are not allowed as dipole

transitions, so that the lifetimes are greater than microseconds in the lowest triplet state. Excitation to the

long-lived triplet level may therefore lead to loss in the laser due to absorption to higher triplet levels.

The broad absorption band can be pumped by flashlamps or by another laser such as the argon or

krypton ion, frequency-doubled Nd:YAG, excimer or copper vapour lasers. The emission band is also

broad so that tunable radiation can be achieved over a bandwidth of about 30 nm from a single

molecule, and over the range of 320 to 1500 nm from a set of molecules. The large fluorescent

bandwidth enables mode-locking techniques (described in Chapter 16) to be used to generate ultrafast

pulses with durations down to a few femtoseconds.

Problem 15.1

(i) For a continuous wave laser, and ignoring photon losses by absorption and scattering, calculate the rate at

which photons are being produced by stimulated emission in (a) a 1 watt laser at wavelength 600 nm and (b) a

1 milliwatt maser at a frequency of 3000 MHz.

(ii) Assuming a pulse length of 100 ns, calculate the total energy available and estimate the peak power in a

single pulse from (a) a l ¼ 694 nm solid state laser in the form of a rod 10 mm in diameter and 0.1 m long

containing 3 	 1019 active ions per cm3 and (b) a CO2 gas laser of wavelength 10.6 mm, 30 mm in diameter

and 2 m long containing gas with 6 	 1018 molecules per cm3.

(iii) Calculate the longitudinal mode separation in the cavity of a 633 nm He–Ne laser with mirrors separated by

0.3 m. How many of these modes could oscillate if the width of the gain curve is 2 	 109 Hz?

Problem 15.2
Show for a blackbody that the energy density u per unit frequency interval is related to the radiance (brightness)

R as

u ¼ 4pR
c

:
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Problem 15.3
For a system in thermal equilibrium calculate the temperature at which the rates of spontaneous and stimulated

emission are equal for a wavelength of 10mm.

Problem 15.4 A proof that photons are bosons
In thermal physics, three kinds of particles are considered: bosonic, fermionic and classical (the high-

temperature, or low-density, limit shared by the other two kinds). Particles with integer spin, such as photons

ðs ¼ 1Þ, act as bosons and can have any number of particles per quantum state or mode. Particles with half-odd-

integer spin, such as electrons, protons or neutrons ðs ¼ 1
2
Þ, behave as fermions, with only 0 or 1 in each state.

In equilibrium at temperature T , photons must occupy states with a mean density per

mode =½expðhn=kTÞ þ���1
, where the constant � depends on which kind of particle they are: � ¼ þ1

(fermions), 0 (classical), �1 (bosons). In all three cases, the density of modes per unit volume per unit frequency

(including two polarizations) is DðnÞ ¼ 8pn2=c3.

(a) Following Einstein’s approach, derive relations for the A and B coefficients including the constant �. Then

show that:

(b) photons cannot be classical, since there would be no stimulated emission;

(c) photons cannot be fermions, since Einstein’s model of radiative transitions would fail.

Problem 15.5
Compare the Doppler-broadened linewidth of the He–Ne laser with that of the argon ion laser given the following

data:

He–Ne Arþ

Atomic mass 20 (Ne) 40

Wavelength (nm) 633 488

Gas temperature (K) 400 5000

Problem 15.6
In the He–Ne laser operating at 633 nm the Einstein A coefficient of the upper laser state is 3 	 106 s�1. The upper

state has a degeneracy of 3 and a population of 1016 m�3 and the lower state a degeneracy of 5 and a population of

1015 m�3. The mirror reflectivities are 1.0 and 0.95, the losses are 3% per round trip, and the gas temperature is 400 K

(as in Problem 15.4). The laser transition has a Doppler inhomogeneously broadened spectral line profile. Calculate

the minimum length required for the gain medium to achieve laser operation.

Problem 15.7
An He–Ne laser operating at 633 nm in the TEM00 mode has an output power of 1 mW and a minimum spot

radius of 0.3 mm. Find:

(a) The beam divergence angle.

(b) The laser radiance or brightness R ¼ PðA�Þ�1;whereP is the power, A the spot area, and � the solid angle

subtended ’ py2 for divergence angle y 
 1.

(c) The temperature of a blackbody with the same brightness.

Problem 15.8
Calculate (a) the threshold gain coefficient and (b) the population inversion n2 � ðg2=g1Þn1 for a ruby laser

operating at 694.3 nm. The spontaneous lifetime of the upper laser level is 3 ms, the linewidth of the transition is

150 GHz and the ruby crystal refractive index is 1.78. The laser transition is homogeneously broadened, and the

degeneracies of the upper and lower laser levels are g2 ¼ 2 and g1 ¼ 2. The laser cavity has reflectivities 1.0 and

0.96; the length is 5 cm and other losses are negligible.
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Problem 15.9
Calculate the fraction of the beam power and the average photon flux within the beam waist for a 1 watt argon

ion laser operating at 515 nm, and with a cavity length of 1.5 m.

Problem 15.10
Determine the number of longitudinal modes in an argon ion laser of length 80 cm if the laser wavelength is

515 nm. The laser transition is Doppler broadened and the gas temperature is 5000 K (see Section 12.2 and

Appendix 4 for the linewidth). In this case the loss coefficient is one-third the peak gain value.

Calculate the maximum length of the laser cavity for only one longitudinal mode to oscillate.

Problem 15.11
Explain why the frequency spacing of modes for a laser in the form of a ring is twice that for a standing wave

cavity of the same length.

Problem 15.12
A carbon dioxide laser operating at the 10.6 mm transition has a gas pressure of 1 atmosphere and gas

temperature of 400 K.

By estimating the contribution to the linewidth from Doppler and pressure broadening determine if the

transition is broadened by homogeneous or inhomogeneous effects (see Appendix 4 for the linewidth

equations).
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16 Laser Light

How far that little candle throws his beams!/ So shines a good deed in a naughty world.

William Shakespeare, Merchant of Venice.

Stimulated emission, which is at the heart of laser action, produces a multiplicity of photons, identical

in frequency, phase and direction. This coherence in laser light contrasts sharply with the chaotic

nature of light from spontaneous emission, and gives laser light its extraordinary properties of narrow

spectral linewidth (i.e. temporal coherence) and directionality (spatial coherence). Some of these

properties are familiar; a laser beam can be pencil-sharp over a large distance, and the speckles in a

spot of laser light on a surface distinguish it at a glance from incoherent light. Coherence allows laser

light to be focussed to a spot only a few wavelengths across, with an intensity that is useful in heating

and cutting many different materials. The highest power flux is obtained in lasers operating with short

pulses, and techniques exist for producing pulses only a single cycle or a few femtoseconds (10�15s)

long. High intensity also means high electric fields; dielectrics may behave non-linearly at such high

fields, producing effects such as the generation of shorter wavelength laser light at a harmonic of the

laser frequency.

In this chapter we examine the temporal and spatial coherence properties of laser light, including

its directionality and radiance (or brightness), and the theoretical and attainable limits on linewidth,

focussing and pulse width. We also consider the effects of the extremely high electric fields in short

laser pulses, including the non-linear behaviour of dielectrics and the generation of harmonics.

16.1 Laser Linewidth

In a laser cavity the frequency of the oscillation is determined by a resonance in the cavity rather than

by a natural resonance in an atom or ion. The process of stimulated emission usually leads to laser

light with a considerably narrower linewidth than that of the spontaneously emitted radiation, and the

laser beam consequently has a very pure colour. The beam will, however, contain a small proportion

of spontaneously emitted photons, which add to the beam with random phase. It is this addition of

incoherent photons that ultimately limits the coherence of the laser light. We start with a simple

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



situation when only the ratio between stimulated and spontaneous emission limits the coherence,

which occurs when there is a large population inversion. The theoretically attainable limit of

bandwidth then depends only on the laser power and the width of the cavity resonance.

Consider a laser oscillating in a single mode, populated by �n photons. Nearly all these photons have
been produced by stimulated emission, and are completely coherent. There is also a population of

photons generated by spontaneous emission from the excited atoms in the laser, and a small number

of these must be in the same mode as the coherent population. The population of these incoherent

photons relative to the coherent photons limits the coherence of the laser beam. We therefore need the

relative rate of stimulated and spontaneous emission in a single mode. This ratio is simply the mean

population �n in the mode;1 recalling that the A21 and the B21 coefficient represent incoherent and

coherent photons respectively, it follows that there is on average only one incoherent photon and

�n� 1 coherent photons (or �n to a very good approximation). The single incoherent photon contributes

on average 1=�n of the power, and thus 1=
ffiffiffi
�n

p
of the electric field. The photons in the population last

for a certain time in the cavity before they are either emitted from the cavity or absorbed; this time,

tcav, is the decay time for the cavity. The phase relation between the coherent and incoherent

components changes randomly on this time scale.

The effect of the vector addition of this incoherent field component is shown in Figure 16.1, which

shows two successive phasors of the incoherent photons added to the coherent component. The tip of

the resultant phasor follows a random walk as these changes accumulate. A single step of this random

walk can modify the phase of the main field by the ratio of amplitudes �f ’ �n�1=2 radians. The

phase change builds up randomly; when it reaches approximately 1 radian the original phase is

effectively lost. This occurs after �n changes, i.e. after a time tcav�n. This phase diffusion time

determines the frequency width �nL, from the bandwidth theorem (Section 4.12):

�nL ’ 1

2p�ntcav
: ð16:3Þ

The number of photons in the beam at any time is related to the power P and the cavity decay time by

�nhn ¼ Ptcav ð16:4Þ

1The ratio of the transition rates is, from Section 15.3,

B21uðT; nÞ
A21

¼ uðT; nÞc3
8phn3

ð16:1Þ

where uðT; nÞ is the energy density and A21;B21 are the Einstein coefficients. The classical density of modes rðnÞ
in a blackbody cavity is

rðnÞ ¼ 8pn2

c3
ð16:2Þ

(see for example F. Mandl, Statistical Physics, 2nd edn, John Wiley & Sons, 1988). The required ratio is

uðT; nÞ=hn
rðnÞ ;

which is �n, the number of photons per unit volume and unit frequency interval divided by the number of modes

per unit volume and unit frequency; the ratio of rates is therefore the average number of photons per mode.
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giving the laser frequency width as

�nL ¼ hn
2pt2cavP

: ð16:5Þ

The decay time of the cavity resonance tcav is related to the width of the resonance �ncav by

tcav ¼
1

2p�ncav
: ð16:6Þ

The laser linewidth may therefore be related to the width of the cavity resonance by

�nL ¼ 2phn
P

ð�ncavÞ2: ð16:7Þ

Note that this theoretical minimum linewidth decreases as the power increases.2

The theoretical limit is hard to attain in practice in gas lasers. A typical calculation from equation

(16.7), shows that an ordinary He–Ne laser should give a linewidth of order 10�2Hz, while in practice

a width of a few kilohertz is commonly observed. The difference is due to thermal and mechanical

instabilities which cause random changes in the cavity length.

Theoretical linewidths are much larger in semiconductor lasers, because the small cavity length

(typically 300 mm) leads to a very short decay time (5 ps) and a large cavity resonance linewidth

(typically 1010Hz). The linewidth �nL of a semiconductor laser is usually around 106–107Hz.

Incoherent
photons

Re E(t)

Im E(t)

Cohere
nt p

hotons

φ (t)

Figure 16.1. Phasor diagram showing the small addition of an incoherent spontaneously emitted photon to
coherent laser light. Further additions occur at random phase at intervals of tcav, the decay time of the laser
cavity. The size of the incoherent components is greatly exaggerated in this diagram

2A more rigorous calculation takes into account the numbers n2; n1 of species in the upper and lower laser

levels and the population inversion �n ¼ n2 � ðg2=g1Þn1 where g2; g1 are the degeneracies of the levels. Then

�nL ¼ 2phnð�ncavÞ2

P

n2

�n
:
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The further progress of the phasor diagram of Figure 16.1 is shown in Figure 16.2, where the

essential difference between ordinary incoherent light and laser light is shown in the probability

distribution of amplitude and phase. A plane quasi-monochromatic electromagnetic mode may be

described by the electric field ~EðtÞ ¼ E0 expð�io0tÞaðtÞ exp½ifðtÞ�. The electric field consists of a

carrier wave at frequency o0 with random amplitude and phase modulation, represented by aðtÞ and
fðtÞ. In ordinary light the arrival of photons follows Gaussian statistics; the probability distribution

Figure 16.2 Probability distributions of amplitude and phase of the electric field for (a) laser light (b) ordinary
light. The magnitude of the probability is proportional to the density of shading. (R. Loudon, The quantum theory
of light, 2nd ed., Oxford University Press, 1983.)
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expressed as a function of amplitude and phase has a peak at zero, and all phases are equally

probable. For laser light the distribution of amplitude is Poissonian about a mean; all phases are again

equally likely, but on a long time scale during which the phasor slowly wanders round the circle.

For chaotic light the probability distribution of amplitude is Gaussian; it has the highest probability

at the origin and all phases are equally probable. For this reason chaotic light is referred to as

Gaussian light. Note that the frequency distribution (i.e. the spectrum) of chaotic light can have a

Lorentzian, Gaussian or Voigt profile (see Chapter 18) and is not to be confused with the Gaussian

amplitude distribution described here. A distinction between chaotic light and laser light can be

observed in a photon-counting experiment in which the rate of arrival of photons at a detector is

measured. In chaotic light the arrival of photons shows photon correlation (or bunching); this is

discussed also in Section 13.8. The probability pðnÞ of detecting n photons in a certain time interval,

for a chaotic (thermal) source with mean number �n, is a Bose–Einstein distribution:

pðnÞ ¼ 1

1þ �n

�n

1þ �n

� �n

: ð16:8Þ

For coherent light from a single mode laser, the photon arrival times are statistically independent and

follow a Poisson distribution:

pðnÞ ¼ �nn

n!
expð��nÞ: ð16:9Þ

In this book the semi-classical theory is adopted in which the photon energy and atomic energy

levels are quantized, while the electromagnetic field is classical, and non-quantum-mechanical. It is

appropriate here to draw attention to the extension from this approach in which the electromagnetic

field is treated quantum-mechanically. In that case, a single mode laser operating well above

threshold denotes a coherent state corresponding to a classical stable electromagnetic wave. Briefly

in the quantized field description the energy of a mode is quantized. This implies that the lowest

energy of a radiation mode, corresponding by definition to the vacuum state, is a zero-point energy

W0 ¼ 1
2
�ho. There is also an associated fluctuation in the background field, which contributes noise in

a measurement. The phases of the zero-point fluctuations can be influenced to reduce the noise,

giving squeezed light. A property of squeezed light is that it has a variance in photon number which is

reduced (squeezed) below that for a coherent state, and is termed sub-Poissonian or non-classical.

Several methods have been devised to generate squeezed light using laser sources and parametric

down conversion. The reduced noise in squeezed light leads to its potential applications in digital

optical communications, interferometry and precision measurements.

16.2 Spatial Coherence

The term spatial coherence usually refers to coherence transverse to the laser beam, and is also

termed transverse or lateral coherence. Spatial coherence is described in Section 13.1. When

operating on a single transverse mode laser radiation has a high degree of spatial coherence, while

a laser operating on more than one transverse mode has reduced spatial coherence. For a laser the

transverse coherence length Lt is dependent on whether the laser is operating in a single transverse

mode or in multiple transverse modes. The beam divergence angle yt is related to Lt as

yt � l/Lt ð16:10Þ
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The high degree of collimation of lasers results from the high effective values of Lt that are able to be

established.

The spatial coherence of the beam can be measured using Young’s double slit interferometer

described in Chapter 8.

The quantitative measure of spatial coherence is described by the coherence function gð1Þðr1t1; r2t2Þ
(equation (13.18)) which includes the spatial and temporal coherence dependence of a light beam at

space and time points r1t1 and r2t2. Measurement at two points r1 and r2 across a beam at the same

time ðt1 ¼ t2 ¼ tÞ yields the first-order degree of spatial coherence

gð1Þðr1; r2Þ ¼
hEðr1; tÞE�ðr2; tÞi

½hjEðr1tÞj2i hjEðr2tÞj2i�1=2
: ð16:11Þ

This quantity has values 0 � gð1Þ � 1. A beam with gð1Þðr1; r2Þ ¼ 1 has perfect spatial coherence.

The irradiance of the TEM00 transverse laser mode has a radial dependence which is a Gaussian

function (equation (15.36)). A beam with minimum spot diameter 2w0 has spatial coherence across

that dimension, the divergence angle is yt ’ l=pw0, and the transverse coherence length is Lt � pw0.

There is therefore a direct connection between the spatial coherence, the transverse coherence length

and the divergence of the beam. The beam divergence can be reduced by expanding the beam with a

telescope as shown in Figure (16.3).

A particular feature of laser light is that it can have a very high degree of spatial coherence. When

combined with the high irradiance obtained from lasers this confers special properties on laser light.

The spatial coherence of laser radiation is dependent on the transverse mode structure of the laser

beam. A laser which is operating in the fundamental TEM00 mode has complete spatial coherence.

When the laser operates on more than one transverse mode the spatial coherence is reduced because

of the loss of coherence between the modes. A laser operating on multiple longitudinal (frequency)

modes can still have high spatial coherence. A single transverse mode in a laser can be selected by

reducing the transverse cross-section of the beam, e.g. by placing an aperture in the laser cavity. The

diameter of the aperture is selected to achieve a single transverse mode but has the consequence of

reducing the output power of the laser. The spatial coherence determines the divergence of the laser

beam, as described in Section 15.8. It also determines in part the size of the focused beam, and the

formation of the speckle pattern observed with laser beams.

The Gaussian dependence of laser irradiance, Iðr; zÞ ¼ I0 expð�2r2=w2ðzÞÞ (equation (15.36)),

results from the spherical resonator used with the laser. It is possible to generate laser beams which

have other transverse irradiance distributions. One example of these is for the electric field to be

described by a Bessel function. For a monochromatic wave propagating in the z direction

Eðr; z; tÞ ¼ KJ0ðkrrÞ exp½�iðot � kzzÞ� ð16:12Þ

with J0 the zeroth-order Bessel function, kr and kz the radial and longitudinal components of the wave

vector k, and K being a constant. A remarkable property of a wave described by the ideal zeroth-order

Bessel function J0 is that it is planar, and the irradiance (I / EE�) is independent of the propagation
distance z, i.e. the irradiance is the same for all positions along z. This means that the beam does not

spread out, i.e. it is non-diffracting, so that its size and irradiance remain constant. Several methods

have been demonstrated to produce beams which are close to a J0 Bessel beam. In practice, the

perfect plane wave Bessel beam cannot be produced since it is required to have infinite radial

dimension. However, close approximations to Bessel beams can be created which have an equivalent

Rayleigh range much greater than that of a Gaussian beam.
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16.2.1 Laser Speckle

An extended spot of laser light on a rough surface may easily be recognized by its grainy appearance,

with a pattern of individual light and dark spots (speckles) which changes as the eye moves. This

arises from random variations in phase of the reflected light at the rough surface: light is scattered

from each point of the surface with a phase depending on the height. In any direction in front of the

surface, light from the component sources combines coherently, but the combined amplitude depends

on the addition of their random phases.

A bright speckle observed by eye occurs in a direction in which the component sources are

adding more or less in phase; this can be anywhere within the direction of the spot. As in any

diffraction problem, we may think of the light leaving the surface as an angular spectrum of plane

waves; each point on the retina responds to a small range of these, covering an angle which is the

angular resolution of the eye. In the direction of a bright spot this small range of component waves

happens to add in phase. Outside this range, and at a different point on the retina, the response is the

sum of an unrelated set of waves, whose phases are very unlikely to add in the same way. The bright

speckles therefore have an angular width which is the angular resolution of the eye; the width does

not depend on the scale of the surface roughness, provided that it is sufficiently rough to introduce

phase changes of at least one wavelength, and that the lateral scale of the roughness is also at least

one wavelength.

If the eye is at distance D from the surface, and the full diameter d of the pupil is illuminated, the

scale size of the speckles as seen on the surface is approximately

SE ’ D
l
d

ð16:13Þ

where l=d is the angular resolution. This is easily tested by moving to different distances D and by

squinting to reduce d. The pattern changes with small movements of the eye, giving a shimmering

effect. Remarkably the pattern does not disappear when the eye is defocussed, as when one’s

spectacles are removed. The pattern also changes when the scattering surface moves or changes: if

instead of a surface, the scatterer is a liquid suspension of particles, e.g. milk micelles or chalk dust in

water, the speckle pattern becomes dynamic, giving an easily observed demonstration of Brownian

motion.

Figure 16.3 A beam-expanding telescope, used to increase the diameter of the coherent beam and reduce its
angular divergence. The beam waist is increased by the ratio of focal lengths of the two telescope lenses. In this
diagram the beam is outlined at the 1=e2 irradiance level; the curvatures of the emergent beam are greatly
exaggerated
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When speckle is observed by eye it is due to an interference pattern formed on the retina of the eye.

There is, however, an interference pattern in the whole space in front of the scattering surface, as may

be found simply by holding a piece of paper or exposing a photographic plate at a fixed position. A

point on the plate is now receiving contributions from the whole of the illuminated surface and the

luminance depends on the superposition of these contributions. Their relative phases change

significantly at an adjacent point on the plate when the path difference between the two edges of

the illuminated spot changes by l. If the spot diameter is s, this requires an angular movement of l=s;
at a plate distance D this gives a speckle scale SP on the plate, where

SP ’ D
l
s
: ð16:14Þ

Note the similarity of these two equations, and that the scale is proportional to D for both, as may

easily be tested experimentally. Perhaps the most unexpected feature of speckle is that the scale is

independent of the scale of the roughness of the surface.

16.3 Temporal Coherence and Coherence Length

The temporal coherence of the laser output is directly related to the spectral bandwidth. A spread of

frequencies in a laser output having a bandwidth �nL leads to a changing phase relation between the

components in the spread, changing randomly the amplitude and phase of their sum (see Chapter 13).

The temporal coherence is characterized by the coherence time tc, during which the frequency

components maintain a fixed phase relation. Assuming a Gaussian line profile, tc is

tc ¼
1

�nL
: ð16:15Þ

The coherence length lc is the distance c�t travelled in the coherence time, so that

lc ¼ ctc ¼ c=�nL ¼ l2=�lL: ð16:16Þ

Very large coherence lengths are often encountered with lasers; even for a comparatively large

linewidth of 1MHz the coherence length is 300m. Interferometric measurement of such narrow

linewidths requires interferometers with correspondingly long optical paths.

The line emission from a low-pressure discharge lamp has a comparatively small coherence length;

for example, the 546.1 nm mercury emission line would have a linewidth of about 2:5� 10�2 nm and

a coherence length of about 1 cm. In contrast the stable single mode He–Ne laser with a bandwidth of

1 kHz gives a coherence length of 300 km. Even the normal He–Ne laser, which usually operates on

several modes simultaneously and consequently has a larger bandwidth, gives a coherence length of

about 50 cm.

The quantities tc and lc can be measured using a Michelson interferometer or a Mach–Zehnder

interferometer as described in Chapters 8 and 12. The open-path Michelson interferometer is

suitable for laser outputs with linewidths above 1GHz, since these correspond to path length

differences less than 30 cm. A laser source with a linewidth of 1MHz observed with a Michelson

interferometer would require a path difference between the two interferometer arms of about 300m.

Such long path differences can be accommodated using a long optical fibre in one of the arms

(Section 8.6).
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Lasers can be used for measuring distances of several kilometres or more in terms of the

wavelength of the laser light; it must be emphasized, however, that the wavelength is determined

by the resonant cavity and is not a fundamental physical parameter, so that only comparative

measurements can be made. A change in distance of a fraction of a wavelength can be detected; for

example, the gravitational wave detector (Chapter 9) is an interferometer with a path length of several

kilometres, designed to detect a periodic fractional change as small as 1 part in 1020 (as may easily be

seen, this represents a very small fraction of a wavelength).

16.4 Laser Pulse Duration

Commonly encountered lasers such as the He–Ne laser and semiconductor lasers produce a

continuous beam of light, although for communications purposes a semiconductor diode laser may

be switched electrically at high rates. Other lasers operate predominantly or only as pulsed sources,

usually because there is not an effective pumping mechanism to sustain CW operation. Where the

laser is pumped by a pulsed source, e.g. a flashlamp, the gain is driven above the threshold value, and

a pulse of laser radiation is emitted. The pulsed laser emission often shows wide fluctuations in

irradiance due to the dynamics of the excitation mechanism, gain and laser output; this is referred to

as laser spiking or relaxation oscillations.

Many lasers are designed to produce individual very short pulses at extremely high intensity.

Phenomenally high irradiances can be achieved in these pulsed lasers; the mean power may, however,

be kept to a manageable level by using a low pulse repetition rate. We describe here two techniques

for producing these ultrashort pulses.

16.4.1 Q-switching

Intense short-duration pulses, in the nanosecond range, may be obtained by the technique of

Q-switching. In normal laser operation the resonant cavity has low losses: it is a resonator with

high quality factor Q. Laser action can be inhibited by reducing the Q of the cavity, e.g. by rotating

one of the mirrors out of alignment. If the excitation (pumping) of the laser is maintained during the

time the cavity is in a low-Q state, the population inversion can build up to a very high value, as

shown in Figure 16.4. Suddenly restoring the original high Q by realigning the mirrors then gives an

intense burst of laser light. The build-up of the pulse is very rapid, since the gain at the instant when

the Q is restored is very much larger than the threshold value. Laser action then removes the

excitation in a very short pulse undergoing only a few passes through the laser medium.

The duration of the Q-switched pulse is approximately the same as the cavity lifetime tcav
described in Section 16.1. This depends on the length L of the resonator, the refractive index n and

the irradiance reflection coefficient R of the mirrors. As the initial laser pulse builds up within the

resonator, at each mirror reflection a fraction ð1� RÞ of the energy is lost from transmission. The

pulse makes 1=ð1� RÞ passes of the resonator, which occurs in the characteristic cavity lifetime tcav:

tcav �
nL

cð1� RÞ : ð16:17Þ

More accurately, in addition to transmission loss tcav takes into account all losses in the cavity.

Q-switching can be achieved in several ways, most simply by rotating one of the mirrors, typically

at about 10 000 rpm, giving a pulse for each rotation. Alternatively the cavity mirror can be replaced
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by a roof-top prism or a combination of a rotating prism and a mirror, Figure 16.5; here the cavity

alignment is achieved for a small angular range of the prism.

Rather than mechanical Q-switching, active Q-switches are more generally used based on electro-

optic or acousto-optic modulators in the laser cavity, which act as shutters. The electro-optic modulator

in the form of a solid state Pockels cell has been previously described in Section 7.11; it is inserted into

the laser cavity as shown in Figure 16.5(b) together with a polarizer. Application of a voltage to the

Pockels cell induces birefringence proportional to the applied voltage. The orientation of the Pockels

cell is such that the induced birefringence is in the plane orthogonal to the axis of the resonator and the

polarizer is set at 45� to the birefringence axis. Applying the bias voltage, a pulse transmitting the

Pockels cell twice with reflection at the mirrors has its plane of polarization rotated by 90� and is

switched out of the cavity by the polarizer. A switching time of a few nanoseconds can be achieved.

The acousto-optic modulator (Figure 16.5c) consists of a crystal or glass (e.g. fused silica) in which

an ultrasonic wave is propagated, inducing refractive index variations at the acoustic frequency. These

Excitation

Cavity Q

Population
inversion

Laser
pulse

Time

Time

Time

Time

threshold

Figure 16.4 Q-switching, showing (a) the growth of excitation, (b) the step increase of Q in the laser cavity,
(c) the growing population inversion and (d) the short laser pulse
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periodic variations act as an optical Bragg grating with an effective period equal to the acoustic

wavelength; the laser beam is diffracted out of the resonator by this phase grating. The ultrasonic

waves are driven by a piezoelectric transducer attached to the crystal which is typically operated at

frequencies in the range of 100MHz to 1GHz.

A passive modulator Q-switch is also often used in which a cell is inserted into the laser cavity

containing a medium, e.g. a dye solution or a solid state absorber, which absorbs at the laser

wavelength. The medium is selected to provide an absorption which can be saturated at relatively low

irradiance, and hence become transparent. At saturation, the medium is bleached and becomes

transparent at the laser wavelength. The switch is then effectively open and the laser intensity may

rapidly build up to a high value.

As an example, the solid state Nd:YAG laser can be flashlamp pumped in normal operation

to produce a pulse of about 1ms duration, typically with a peak power of order 1–10 kW. When

Q-switched the pulse duration can be reduced to 10–100 ns, with a peak power of several megawatts.

16.4.2 Mode Locking

As we have seen in Chapter 4, a short pulse must contain components over a wide bandwidth. A laser

oscillation has an inherently narrow bandwidth, but it may be able to oscillate in several modes with

frequencies spaced within the bandwidth of the resonator and the linewidth of the lasing medium. If

these modes can be excited simultaneously, with a suitable relation between their phases, the effect of
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Laser output
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generator
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(b) Electro-optical (Pockels cell) modulation
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output

M

M

Rotating
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1
Gain medium
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Gain medium M2
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(c) Acoustic-optical modulator

Figure 16.5 Q-switching configurations
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a broad bandwidth is obtained in a regular train of pulses which may individually be shorter than one

picosecond (10�12 s).

Consider a cavity resonator with two mirrors a distance L apart. The separation of the N modes in

angular frequency is �o ¼ pc=L. If they are all excited simultaneously so that the different modes

maintain the same relative phase, i.e. are mode locked, and with equal amplitude, their complex

electric fields add as

~EðtÞ ¼ E0

XN
n¼1

expðiontÞ ð16:18Þ

where on ¼ oþ n�o. The sum of this series is already familiar in the context of diffraction gratings:

~EðtÞ ¼ E0 expðiotÞ exp½iðN þ 1Þpct=2L� sinðNpct=2LÞ
sinðpct=2LÞ : ð16:19Þ

The output irradiance is (apart from a constant factor)

IðtÞ ¼ E2
0

sin2ðNpct=2LÞ
sin2ðpct=2LÞ

: ð16:20Þ

Such coherent oscillation in the set of N modes, known as mode locking, may be achieved by the

rapid and repetitive opening of an electro-optic shutter in the laser cavity. The output is a train of

pulses uniformly spaced in time at the period t ¼ 2L=c, which is the round-trip transit time of a pulse

in the laser cavity, Figure 16.6. The duration of each pulse is approximately ð�nÞ�1
, where �n is the

bandwidth of the set of longitudinal modes in the cavity. Under mode-locked conditions the time-

dependent amplitude of the output is the Fourier transform of the frequency spectrum. For a Gaussian

frequency spectrum with linewidth �n, i.e. a set of modes with amplitudes having a Gaussian

distribution, the mode-locked pulses have a Gaussian time profile with width (FWHM)

�tp ¼ 2 ln 2=ðp�nÞ ¼ 0:441=�n. The maximum irradiance is N2E2
0; note that without coherence

between the modes the maximum would have been only NE2
0.

Mode locking can be produced by the active or passive switches described for Q-switching. Active

mode locking may be achieved by amplitude modulation using the electro-optic Pockels cell or

acousto-optic modulator. The passive switch is provided by placing a cell containing a saturable dye

in the laser cavity. The dye absorbs over a wide bandwidth, but at high intensities the absorption is

reduced because a large proportion of the dye molecules are in the excited state. If the laser is

oscillating with several modes covering the wide range�n, the pulse shape will contain structure with
width ð�nÞ�1

, within a complex shape whose length is determined by a single mode (Figure 16.6(a)).

The highest peak will be amplified more than the lower peaks at each pass through the cell

(Figure 16.6(b)); repeated passages through the dye cell eventually amplify this peak into a single

sharp pulse as seen in Figure 16.6(c).

Mode locking may also be achieved using a non-linear optical effect in which high laser irradiance

produces an increase in the refractive index of a solid. This consequently induces self-focusing of the

beam since, for a beamwidth which has a Gaussian-shaped radial irradiance profile in which the beam

is more intense at the beam centre, the refractive index becomes greater on-axis, and acts as a

converging lens. This effect is used in Kerr lens mode locking in which the self-focusing selects the

pulsed mode-locked set of modes and discriminates against CW operation. Figure 16.7 shows a laser

gain medium, particularly titanium–sapphire Ti:A12O3, in a cavity containing an aperture whose
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function is to create high loss for CWoperation. However, a laser pulse will suffer self-focusing in the

laser medium and will have higher transmission through the aperture.

The pulse of a mode-locked laser can be compressed in time by factors of 20 or more to generate

pulses as short as 1fs. This is achieved by a technique which induces a linear change in frequency

along the pulse (known as a frequency chirp), followed by propagation through an optical system

with dispersion in group velocity. The propagation delay for the back of the pulse is thus made less

than for the front, and the pulse is correspondingly compressed. This may be achieved using a

combination of two diffraction gratings. In a different spectral regime, this technique is also used to

make short radio pulses for high-resolution radar systems.

Ultrashort laser pulses find many applications. Very fast processes in atoms, molecules and

materials can be excited and probed. The short pulses, suitably amplified, are used as the pump source

for X-ray lasers and to study high-temperature and high-density plasmas.

I(v)

I(v)

I(v)
(a)

(b)

(c)

Figure 16.6 Mode locking with a saturable dye. (a) Oscillation at several modes simultaneously produces a
complex pulse. (b) The highest peak is amplified selectively. (c) After many passes through the dye cell the peak
becomes a single narrow pulse

M

Pump

Aperture

M21

Gain medium

Figure 16.7 Kerr lens mode locking
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16.5 Laser Radiance

The radiance3 even of low-power lasers is often many orders of magnitude greater than the radiance

of incoherent sources of light, because of the very high directionality of the laser beam. We recall that

radiance R is defined as the power flow P per unit area A and per unit solid angle:4

R ¼ P

A��
Wm�2 sr�1: ð16:21Þ

We recall also that no optical system can increase the radiance of a light source (provided that object

and image are in media with the same refractive index); for example, by focussing with a lens it is

possible to create an image with smaller area than the source but with light flowing over a

correspondingly larger solid angle.

As an example of a bright non-laser source, the radiance of the Sun is about 5:0� 106 Wm�2 sr�1;

this cannot be increased by focussing with a lens or a mirror. In contrast even an ordinary low-power,

e.g. 1mW, He–Ne laser operating at 632.8 nm has a radiance R � 109 Wm�2 sr�1 which is brighter

than a hundred Suns.

An ultrashort pulse laser, such as a mode-locked 1.06mmNd:YAG laser producing 1mJ pulses with a

pulse duration of 50 ps, has a power of 20MW during the pulse; this is equivalent to a radiance

R ¼ 2� 1019 Wm�2 sr�1. High-power pulsed lasers followed by a train of amplifiers can achieve a

radiance approaching 1022 Wm�2 sr�1; furthermore the coherent wavefront from a laser can be focussed

into a very small area. Focussed mode-locked pulses can attain extremely high power densities (of order

TWcm�2) in the focal region. These have widespread application in the processing of materials.

16.6 Focusing Laser Light

A laser beam may be focussed to very small focal spot, not much more than a wavelength across,

giving extremely high power densities. Since diffraction from a circular aperture with diameter D

uniformly illuminated by a plane wave gives a beam with angular radius

y ¼ 1:22l
D

; ð16:22Þ

the spot produced by a lens with focal length f has a diameter

Focused spot diameter ¼ 2:44l
D

f ¼ 2:44lF ð16:23Þ

where F is the focal ratio f=D. Even allowing for some lens aberration, spots of a few wavelengths in

diameter can easily be achieved, giving power densities high enough for cutting and welding metals.

For example, CO2 lasers operating at 10.6 mm wavelength with a power of 500W can be focussed to a

spot 50 mm across, giving a power density of 250 kWmm�2.

3The radiance of a source is frequently termed brightness in earlier and some current literature; we adopt the

term radiance to conform with international convention (see Appendix 1).
4Note that spectral radiance (spectral brightness) also includes ‘per unit bandwidth’.
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The action of a lens with a short focal length f is illustrated in Figure 16.8. Here the diameter d of

the lens has been chosen to match the width of the wavefront of a beam at distance z from the waist,

where the beam has expanded according to equation (15.38). Then

d ¼ 2wl ¼ 2
lz
pwo

ð16:24Þ

where 2wo is the beamwidth at the waist. The wavefront emerging from the lens converges to form a

focal spot with width 2wf , limited by diffraction of the wavefront to

wf ¼
2fl
pd

¼ 2

p
lF ð16:25Þ

where F is the F-number of the lens. Provided that the lens diameter matches the width of the

laser beam, the spot size is limited only by the F-number and the wavelength of the light. A practical

low value is F ¼ 1, giving a smallest spot size approximately equal to the wavelength of the laser

light.

A 1mW He–Ne laser focussed by a lens with F ¼ 1 has a focal radius of rf ¼
ð2=pÞð6:3� 10�7Þ ¼ 4� 10�7m. The power per unit area at the focus is 2� 109 Wm�2.

16.7 Photon Momentum: Optical Tweezers and Trapping

The precision of focussing and the spectral purity of laser light have led to two remarkable

applications of photon momentum, which we now describe.

16.7.1 Optical Tweezers

Optical tweezers use focussed laser light to manipulate microscopic objects and even individual

atoms by trapping them in a focal spot. The mechanism is illustrated for a small transparent dielectric

sphere in Figure 16.9. In Figure 16.9(a) a ray is refracted through the sphere, and the angular

deviation of the ray transfers momentum to the sphere in the opposite direction. Figure 16.9(b) shows

rays converging on a focal spot above the centre of the sphere, with the corresponding reaction forces

combining to give a net upwards force, towards the focal point. Similar diagrams can be drawn for a

sphere below or to one side of the focal spot; in each case the net force is towards the focal spot,

which forms a trap for the dielectric sphere.

The force on a microscopically small dielectric sphere may be measured in nanonewtons (nN).

Such a sphere may be attached to a biological molecule, such as DNA or a molecular motor, allowing

measurements to be made of their strength and elasticity.

Focal spot
1/e2 irradiance

beam

Figure 16.8 Focussing a laser beam by a converging lens
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16.7.2 Laser Cooling

A dilute atomic gas in a vacuum chamber may be cooled by a laser beam which acts selectively

on atoms with large thermal velocity, slowing them and thus cooling the gas. The selection is

achieved by tuning the laser to a frequency immediately above a resonant frequency of the atom. The

effective cross-section of the atom is maximum at resonance, but the Doppler effect of a thermal

velocity towards the laser source shifts the resonance into coincidence with the laser frequency.

Radiation pressure therefore slows the atoms moving towards the laser source. A laser illuminating

the gas from the opposite direction acts similarly on atoms moving away from the first laser beam;

two further pairs of laser beams on the orthogonal axes deal similarly with the other components of

motion.

The interaction is best considered in terms of the transfer of momentum from photons by absorption in

the atoms. Taking a sodium atom as an example, the r.m.s. thermal velocity at 300K is about 570ms�1.

At a sodium D-line (wavelength 589 nm), the laser must be tuned to a shorter wavelength, calculated

from the Doppler shift for an atom travelling towards the laser, which is nearly 109Hz. A single collision

with a photon transfers momentum p ¼ h=l, reducing the speed of the atom by about 0:03ms�1. The

20000 collisions required to bring the velocity to zero occur typically within milliseconds.

Laser cooling was first achieved in 1985 by S. Chu, who reduced the temperature of a cloud of

sodium atoms to below 1 millikelvin.

16.8 Non-linear Optics

Before the discovery of the laser the propagation of a light wave travelling in a medium could be

described by a linear dependence of the polarization on the electric field of the light wave, P ¼ E0wE.
With laser beams the light irradiance can readily be large enough that the polarization response of the

(a) (b)

Centre of dielectric
    sphere

Reaction force

Microscope 
objective

f

ff

Net force 
towards focus

Focal
     point

Figure 16.9 Forces on a dielectric sphere at the focus of laser light. (a) A ray is refracted and deviated,
transferring momentum to the sphere in the opposite direction. (b) The reactions from rays converging from
opposite sides combine to force the sphere towards the focal point. The converging rays are from a laser,
focussed by a microscope objective lens
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medium is non-linear on its dependence on the electric field. This has opened up the dramatic new

subject of non-linear optics.

From Section 5.3 the r.m.s. electric field E in any electromagnetic radiation field is related to the

irradiance I by I ¼ n �E2=377Wm�2 (in a non-magnetic medium with refractive index n). The peak

field Emax in a dielectric with refractive index n is therefore

Emax ¼ 27:4
I

n

� �1=2

Vm�1; ð16:26Þ

where I is measured in Wm�2. A peak field reaching 1012Vm�1 is attainable in an ultrashort pulse

from a high-powered laser. This is greater than the typical internal field strength of a dielectric, or the

field binding the electron to a proton in the hydrogen atom.5 A laser pulse can therefore completely

disrupt a dielectric medium. Expensive optical components have been destroyed in a few picoseconds

in this way!

At lower fields, in the range 107 to 109 Vm�1, the dielectric may respond non-linearly to the field

and generate harmonics. We have previously treated the polarization of a dielectric as proportional to

the electric field; we must now include further terms and write

P ¼ E0ðwEþ wð2ÞE2 þ wð3ÞE3 þ . . .Þ ð16:28Þ

where w is the normal linear susceptibility of the dielectric, and wð2Þ; wð3Þ; etc., are second, third and

higher order terms; P and E represent (signed) components along any given direction. The origin of

the non-linear response is from the non-linear movement of the outer, more loosely bound electrons in

the medium. In the Lorentz model for the interaction of electromagnetic radiation with a dielectric,

described in Chapter 19, electrons are harmonically bound to an ionic core. In the linear model the

outer electrons respond to the electric field of a light wave experiencing a force F ¼ �mo2
0x, where m

and x are the mass and displacement of the electron. The classical model is modified under strong

electric fields with the addition of an anharmonic force proportional to x2, leading to a non-linear

equation of motion for the electron of the form

€xþ o2
0xþ ax2 ¼ e

m
E cosot ð16:29Þ

where damping has been omitted.

A light wave with a field E ¼ E0 cosot induces a polarization

P ¼ E0ðwE0 cosot þ wð2ÞE2
0 cos

2 ot þ wð3ÞE3
0 cos

3 ot þ . . .Þ
¼ E0½wE0 cosot þ 1

2
wð2ÞE2

0ð1þ cos 2otÞ
þ 1

4
wð3ÞE3

0ð3 cosot þ cos 3otÞ þ . . .�: ð16:30Þ

The polarization P is therefore oscillating at harmonics 2o; 3o, etc., and radiating waves at these

higher frequencies. Frequency doubling, i.e. the generation of the second harmonic, is commonly

5The field of a point electric charge e at distance r0 ¼ 0:1 nm is

E ¼ e

4pE0r20
’ 1011 Vm�1: (16.27)
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achieved in non-isotropic materials; harmonics above second order may also be produced at higher

field strengths in isotropic materials. The term 1
2
wð2ÞE2

0 is time independent and describes the creation

of a constant field across the medium. This effect is known as optical rectification.

There is a distinction between the second- and third-order processes. For materials that are

isotropic or centrosymmetric, wð2Þ ¼ 0 and no second-order processes occur. A medium has a centre

of symmetry if an electron at position r relative to that point experiences the same field when at

position �r. If we imagine reversing the sign of E, the sign of the total polarization must also reverse.

However, since Pð2Þ / wð2ÞE2 this can only occur if wð2Þ ¼ 0. Hence Pð2Þ only occurs in materials

without a centre of symmetry, i.e. non-centrosymmetric. Certain crystals are non-centrosymmetric,

while gases and liquids are centrosymmetric. Third-order processes occur for both centrosymmetric

and non-centrosymmetric materials. Typical values for the non-linear susceptibilities are

wð2Þ � 2� 10�11mV�1 and wð3Þ � 4� 10�23 m2 V�2. In general for anisotropic materials, P and E
are not in the same direction. The non-linear polarizability wð2Þ depends on the polarization of the

electric field, the orientation of the optic axis of the crystal and the direction of propagation. This

requires wð2Þ to be a tensor, such that the second-order non-linear polarization is

P
ð2Þ
i ¼ E0

P
ijk
wð2Þijk EjEk: ð16:31Þ

Here i, j, k represent the coordinate directions x,y,z. (Equation (16.31) includes isotropic materials as a

special case.)

An interesting aspect of these processes is their interpretation in terms of photons. Two identical

photons arriving nearly simultaneously at a molecule in a crystal lattice can emerge from the

encounter as a single photon with twice the energy: this is frequency doubling. The probability of

such close encounters depends on the flux of photons, since two must be found close to the same

molecule for the interaction to occur; this is equivalent to the power-law dependence on the field

strength in equation (16.30).

Frequency doubling is important as a way of producing coherent light at new or shorter

wavelengths; a laser beam at frequency n1 traversing a medium for which wð2Þ 6¼ 0 can be converted

into a beam at frequency n2 ¼ 2n1. A practical problem is that the original laser light and its second

harmonic must travel along the ray path through the dielectric with the same velocity; if they are

different, the second harmonic light generated from different parts of the path will not add correctly in

phase. Most dielectrics are sufficiently dispersive for this to be a serious limitation on the thickness of

a harmonic generator. In some birefringent materials it can be arranged that the fundamental and

second harmonic waves are polarized as ordinary and extraordinary waves (see Chapter 7), and a

propagation direction can be chosen in which the two refractive indices are equal. A commonly used

material for this purpose is potassium dihydrogen phosphate, known as KDP; the efficiency of

frequency doubling can exceed 50% with this material.

The non-linear crystal may be placed outside the laser resonator, or inside where the fundamental

irradiance is greater; the latter generally leads to higher efficiency. A common application is the

frequency doubling of the pulsed or CW Nd:YAG laser at 1.064 mm to its second harmonic at 532 nm.

Coherent radiation in the UV down to �200 nm can be obtained by second harmonic generation in

b-BaB2O4 which transmits in the UV.

The irradiance of the second harmonic at frequency 2o grows as the fundamental wave at

frequency o propagates in the crystal (Figure 16.10). For the propagation direction z

dIð2Þ

dz
/ Pð2ÞðzÞ: ð16:32Þ
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The induced second harmonic dipole moment per unit volume Pð2Þ is proportional to E2, with

angular frequency 2o1 and wave vector 2k1. However, the second harmonic propagates with

wavevector k2. Because of the dispersion in the refractive index of the crystal, k2 6¼ 2k1. For a

crystal of length l (Figure 16.10) the second harmonic irradiance produced from the element dz at

position z is

dIð2ÞðlÞ / dIð2ÞðzÞ exp½ik2ðl� zÞ�dz
/ exp½ið2k1 � k2Þz� exp½iðk2l� 2o1tÞ�dz:

ð16:33Þ

If we assume that the conversion of the fundamental into the second harmonic is small, so that the

incident fundamental irradiance is undepleted, equation (16.33) can be integrated to give

Ið2ÞðlÞ / sin½ð2p=lÞðn2 � n1Þl�
ð2p=lÞðn2 � n1Þ

: ð16:34Þ

The second harmonic irradiance is a maximum when l ¼ l=4ðn2 � n1Þ. The length over which

conversion of fundamental to second harmonic occurs is the coherence length for second harmonic

generation. This length can be greatly extended by ensuring that n2 ¼ n1, i.e. the refractive index at

the second harmonic is equal to the refractive index of the fundamental. This is the phase match

condition. It may be achieved by using the birefringence of an anisotropic crystal.

Figure 16.11 shows the angular dependence of the refractive indices for ordinary and extraordinary

waves in a negative uniaxial birefringent crystal. If the fundamental wave at wavelength l1 is incident
as an ordinary ray, there is coincidence with the refractive index of the second harmonic generated at

l2 ¼ l1=2 for a certain angle ym if the second harmonic is propagating as an extraordinary ray. Under

these conditions the two waves are phase matched.

An alternative method for efficient second harmonic generation is to create a material in

which the orientation of a ferroelectric domain is alternated after each coherence length. Then

successive elements add to the irradiance of the second harmonic and quasi-phase matching is

achieved. This structure may be realized by periodic application of an electric field to the crystal

(called periodic poling) such as LiNbO3 or KTiOPO4, in a manner similar to microelectronics

fabrication.

Two laser beams with different frequencies o1; o2 propagating in a non-linear dielectric may

induce polarization oscillating at the difference and sum frequencies o1 � o2; o1 þ o2. This is

known as optical mixing. Again these processes are valuable in generating new coherent wavelengths.

The efficiency of the process depends on matching refractive indices.

Which optical mixing process is dominant is determined by the phase-matching condition.

In difference frequency mixing in which o1 ! ½ðo1 � o2Þ, o2� the frequencies o2 and ðo1 � o2Þ

z

dz

ω1, k1
ω1, k1

ωSH, k2

ω1, k1

2ω1, k2

0 l

Figure 16.10 Second harmonic generation in a crystal
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are generated. By placing the crystal in a resonator which selectively resonates o2, the wave

at this frequency can be amplified. This is the basis of the optical parametric oscillator. The

intense beam at o1 is designated as the pump, the amplified wave at o2 is the signal and

the difference frequency is termed the idler. Importantly the parametric oscillator is a tunable

source in which the signal frequency o2 can be varied by rotating the crystal or changing its

temperature.

In frequency doubling the two conditions apply: on photon energy oSH ¼ 2o and on photon wave

number kSH ¼ 2ko. These equations are clearly consistent with the conservation of energy �hoSH ¼
2�ho, and the conservation of momentum �hkSH ¼ 2�hko.

The third-order non-linear susceptibility wð3Þ provides the interaction for the generation of the third

harmonic of the fundamental beam. It also enables the non-linear process of optical phase

conjugation via a four-wave mixing interaction. In this process a wave E1 ¼ E0 exp½iðot � kzÞ�
incident on a phase conjugate cell can be converted into a reflected counter-propagating wave

Er ¼ aE�
0 exp½iðot þ kzÞ� where E�

0 is the conjugate of E0, so that Er is exactly the phase conjugate of

the incident wave, with a change in amplitude through the reflectivity coefficient a. The reflected

wave retraces the path of the incident wave and its spatial phase distribution replicates the phase

distribution of the incident wave. As an example of its usefulness, consider a plane wave which

traverses a medium in which phase distortion occurs, e.g. from aberrations in an optical system or

thermal aberrations in a laser amplifier, as illustrated in Figure 16.12(a). On reflection from a phase

conjugate mirror, the reflected wave retraces its path such that the original phase distortion is

removed.

Phase conjugation acts as a real-time adaptive optical system, able to compensate for beam

propagation in a turbulent or distorting medium. A phase conjugate mirror can be formed by four-

wave mixing, in which a signal of amplitude E3 interacts with two counter-propagating waves E1 and

E2 in a third-order non-linear medium illustrated in Figure 16.12(b). The induced non-linear

polarization is proportional to E�
3. The induced electric field is then proportional to the complex

conjugate of the input electric field. A practical phase conjugate medium is a gas cell containing

carbon disulphide CS2 for which E0wð3Þ � 4� 10�32 SI units (CmV�3).

Propagation
direction
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Figure 16.11 Phase matching with a negative uniaxial crystal (ne < no)
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Problem 16.1
A 1 watt laser beam is focussed onto a spot 10mm in diameter. Calculate the irradiance (see Appendix 1) and

the mean electric field in the spot (see Section 5.5). What is the maximum temperature attainable in the

spot?

Problem 16.2
A solid ruby rod laser 0.2m long with refractive index 1.76 and coated end faces to form the resonator produces

mode-locked pulses. What is the time interval between the pulses?

Problem 16.3
A collimated He–Ne laser beam, wavelength 632 nm, is required for surveying over a distance of 10 km. The

beam will be expanded optically: what waist diameter will be needed?

Problem 16.4
Summarize the properties of a Gaussian light beam. Explain why a Gaussian light beam remains Gaussian after

passing through a lens.

Problem 16.5
From equation (16.7) calculate the minimum linewidth �n obtainable from a 1mW He–Ne laser

(l ¼ 633 nm) if the cavity decay time is 10�7s. Why is this theoretical limit never attained? If the laser length

is 1m, what change in length would give a frequency shift �n equal to the linewidth? If the coefficient of

thermal expansion of the cavity is 10�6 K�1, what temperature change would change the length by this

amount?

Distorted Phase
conjugate
mirror

Reflected
wavewave

Distorting Reflected
wave

Incident
wave medium

(a) Phase conjugate mirror acting to correct wavefront distortion

E2E4

E3

E1 Non−linear medium

(b) Phase conjugation by four-way mixing

Figure 16.12 Phase conjugation. (a) A phase conjugation mirror acting to correct wavefront distortion.
(b) Phase conjugation by four-wave mixing
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Problem 16.6
Compare the coherence lengths of the following sources: (a) a heated filament lamp with a white light output

over the wavelength range 400 to 700 nm; (b) a stabilized CW Nd:YAG laser operating on a single mode with

a linewidth of 20 kHz; (c) an He–Ne laser with a resonator length of 30 cm oscillating in three longitudinal

modes.

Problem 16.7
A 3mW helium–neon laser (l ¼ 633mm) has an emission linewidth �n ¼ 8kHz.

(a) If the beam diameter is 0.34mm, find, and compare with that of the laser, the power emitted by an equal area

of the following:

(i) The Sun over all frequencies. Assume it radiates like a blackbody at temperature T ¼ 5800K.

(ii) The Sun over a frequency range equal to �n of the laser, and centred on the same frequency. (Hint: The

spectral irradiance IðxÞ of a blackbody (power per unit area per unit frequency), where x ¼ hn=kT , is given
in Section 5.7.)

(b) Comment on the preceding.

Problem 16.8
The radiation pressure Prad of blackbody radiation is related to its energy density u by Prad ¼ u=3.

(a) At what temperature T will the radiation pressure be 10�2 bar? (1 bar ¼ 105 Nm�2 � 1 atm).

(b) The pressure supporting stars is the sum of gas pressure and radiation pressure. Models of the Sun’s interior

predict that at the centre of the Sun, the temperature is T ¼ 1:55� 107K, and the total pressure is

Ptot ¼ 3:4� 1011 bar. Assuming that the interior acts like a blackbody cavity, find out the relative importance

of the radiation in the pressure balance at the Sun’s centre.

Problem 16.9
A laser of power � is used to focus a spot of diameter 2 mm on a totally reflective mirror surface. Find the value

of � such that the spot exerts a pressure of 10�2 bar.

Problem 16.10
An argon ion laser has a resonator length of 100 cm and a Doppler broadened linewidth �nD ¼ 3:5GHz. In this

laser the magnitude of the loss coefficient is half that of the peak value of the small-signal gain coefficient. The

refractive index of the laser medium can be assumed to be unity. Determine (a) the frequency spacing of the

longitudinal resonator modes, (b) the number of longitudinal modes that the laser can sustain.

Problem 16.11
An He–Ne laser operating at 633 nm generates a Gaussian beam with a minimum spot diameter

2o0 ¼ 0:2mm. Determine (a) the angular divergence of the beam, (b) its depth of focus, (c) the radius of

curvature of the wavefront with distance z along the propagation distance for z ¼ 0 and z ¼ z0, where z0 is the

Rayleigh range, (d) the diameter of the laser beam after travelling across the city of London, assuming a

distance of 25 km.

Problem 16.12
The beam from an Nd:YAG laser (l ¼ 1:06 mm) has an initial diameter of 5mm and is required to be focused to a

diameter of 0.5mm. Calculate the focal length of the lens required. With the assumption that the focal region can

vary by up to 10%, what is the depth of focus?

Problem 16.13
Consider the conversion of a fundamental wave to its second harmonic when propagating over a length L in a

non-linear crystal. If k1 and k2 are the wave vectors for the fundamental and second harmonic waves show that
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the irradiance I of the second harmonic is

I / sinðk1 � k2=2ÞL
ðk1 � k2=2ÞL

� �2
: ð16:35Þ

Estimate the propagation distance in a KDP crystal, under conditions without phase matching, for the highest

conversion from a fundamental wave of 800 nm to its second harmonic. For KDP the refractive index at 800 nm

is 1.5019 and at 400 nm is 1.4802.

Explain how phase matching can increase the conversion efficiency.

Problem 16.14
Two lasers of high irradiance have wavelengths of 0:5mm and 0:75mm. What non-linear optical processes could

be used to generate light at (a) 0:3mm and (b) 1:5mm? How can one of the processes be made to dominate the

other?

Problem 16.15
The momentum transfer exploited by optical tweezers can be illustrated by considering the interaction between a

light beam and a lens.

(a) A uniform monochromatic light beam of power P falling normally on the vertex of a thin lens of focal length

f is brought to a focus on-axis. The incident light consists of N photons per unit volume, each carrying

momentum p and energy pc parallel to the optic axis (þ z axis). If the beam’s radius is r, show that the power

can be written as P ¼ Npc2pr2.

(b) By considering the deflection of the photons by the lens, find the average change of photon momentum along

the axis, and show it is �ðp=4Þðr=f Þ2. Deduce that the total refractive force on the photons is

Frefr
zðphotÞ ¼ �ðr=f Þ2ðP=4cÞ.

(c) In addition to the refractive force, the photons also experience a scattering force when reflected at the glass–

air interfaces. From equation (5.36), the reflectance is R ¼ ½ðn2 � n1Þ=ðn2 þ n1Þ�2 in going from medium 1 to

2, or from 2 to 1. For a typical glass–air interface with n2 ¼ 1:5; n1 ¼ l;R is only 4% and our neglect of this in

part (b) was justified. Ignoring multiple reflections, the two surfaces of the lens give R � 2½ðn� 1Þ=ðnþ 1Þ�2,
where n ¼ n2=n1. Write an expression for the scattering force on the light.

(d) Deduce an expression for the total reaction force on the lens, including both types of force.

(e) Evaluate the total force on the lens for P ¼ 6mW, r ¼ 0:5mm, f ¼ 8 cm, n ¼ 1:5.
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17 Semiconductors and Semiconductor
Lasers

How bright these glorious spirits shine!

Isaac Watts, 1674–1748.

Semiconductors play a vital role in optics both as sources and as detectors of light. The light-emitting

diode (LED) and laser diode are widely used, as are the various forms of photodiode detector.

The semiconductor laser in its many forms is the most numerous of all lasers. It has widespread

application, e.g. in optical fibre communication systems, barcode scanners, laser printers and

the compact disc player. Semiconductor lasers, like the gas and solid state lasers considered in

Chapter 15, depend on stimulated emission to produce coherent light in a resonator. They have,

however, different pumping and photon generating processes, which we now consider.

Semiconductor lasers have many valuable properties. They have high efficiencies (defined as laser

power output/electrical power input) of typically 30 to 50%, which is higher than most other lasers.

They are very small, typically with dimensions of less than 1 millimetre, and require only modest

power supplies, operating typically at a few volts and currents of 10 mA to a few amps.

Semiconductor lasers use direct electrical pumping; modulation at frequencies typically up to

20 GHz makes them very suitable for optical communications. The wide range of semiconductor

lasers at many wavelengths and power levels and their particular radiation characteristics lead to

many other applications, such as in spectroscopy, sensing and optical data storage.

In this chapter we review the basic physics and radiative mechanisms of semiconductors and LEDs.

We describe the structures and operation of practical forms of semiconductor lasers, including

heterostructures and quantum well diodes. We briefly review the radiation characteristics of

semiconductor lasers, which are distinct from those of other lasers.

17.1 Semiconductors

An isolated atom, of atomic number Z, consists of a positively charged nucleus with charge þZe,

surrounded by Z electrons of charge �e. The electron energies are quantized into discrete levels, and

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



without thermal excitation the electrons occupy the Z lowest energy states of the atom. When a large

number N of such atoms are brought together to form a solid, the interactions between the atoms

spread the allowable energy levels into bands, each containing 2N energy states (the factor 2 results

from the two-fold degeneracy of the atomic levels due to electron spin). Without thermal excitation,

electron energies fill the lowest possible bands. For electrons to provide conductivity by moving

through the material, their energies must be in higher levels. Thermal excitation can raise electrons

into higher energy states; however, if Z is even, as in silicon, the topmost level of the allowed band of

states is full at low temperatures, and the electron can only be excited into an empty energy state by

surmounting a gap between the full and empty bands. The last fully occupied band is the valence

band and the first empty band is the conduction band. The bands are separated by the bandgap Eg; for

silicon the bandgap is 1.1 eV.

Silicon is called a semiconductor because of the relative ease of exciting electrons from the valence

band to the conduction band. For a much larger bandgap, the solid would be an insulator. If

the bandgap does not exist (i.e. the lowest energy of the upper band is less than the highest energy of

the lower band), or if Z is odd giving a half-filled upper band, then the solid is a conductor, i.e. a

metal. The schematic energy bands and their occupancy are shown in Figure 17.1 for a metal, a

semiconductor and an insulator.

At absolute zero temperature there are no electrons in the conduction band of a pure semiconductor

and the material is a perfect insulator. Thermal excitation raises the energies of a small number of

electrons into the conduction band. This leaves a corresponding number of unoccupied energy states

in the valence band; both the free electrons and the vacancies are important in the behaviour of a

semiconductor.

When the energy of an electron takes it into the conduction band, the unoccupied state, or hole, in

the valence band allows some movement among the remaining electrons. This movement of the

valence electrons is best understood by regarding the hole as a positively charged particle which has

its own mobility and mass and which can contribute to the conductivity of the semiconductor. If an

external electric field is applied, the electron and the hole move in opposite directions, the electron

moving faster than the hole. The thermally excited electrons in the conduction band and the holes in

the valence band are carriers and provide conduction in the semiconductor. Electrons may also be

excited into the conduction band by absorbing the energy of a photon; this is the basis of a

photoconductor, in which photons with sufficient energy to excite electrons directly from the valence

band into the conduction band are detected by an increase in conductivity. For metals the conduction

band is part filled with electrons which, with application of a potential, are able to move to provide
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Figure 17.1 Electron energy levels in (a) a metal, (b) an intrinsic semiconductor, (c) an insulator
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conduction. In the insulator the valence band is filled with electrons and the conduction band is

empty, such that conduction is not possible. The bandgap for the semiconductor is less than for the

insulator so that electrons are more readily able to be excited from the valence band to the conduction

band.

The energy E of an electron excited into the conduction band is measured from the bottom of this

band. Electrons of energy E move as waves with wave vector magnitude k. The allowed energies of

the electrons are related to the wave vector as E ¼ 1
2
m�v2 ¼ �h2k2=2m�, where m� is the effective mass

of the electron.1 E and k for an electron in the conduction band are therefore related as shown in the

upper curve of Figure 17.2. The energy of an electron in the valence band is measured downwards

from the top level of the valence band, giving the lower curve.

The concentration of electrons ne in the conduction band and the concentration of holes in the

valence band are determined by the density of available states as a function of energy, rðEÞ, and the

probability f ðEÞ in the conduction band and ½1 � f ðEÞ� in the valence band of the states being occupied.

The number of electrons and holes per unit volume, ne and nh, within the energy range dE is

nedE ¼ f ðEÞrðEÞdE
nhdE ¼ ½1 � f ðEÞ�rðEÞdE:

ð17:1Þ

The density of states as a function of wave vector rðkÞ is rðkÞdk ¼ k2dk=p2. Substituting for k, the

density of states as a function of energy is

rðEÞdE ¼ 1

2p2

2me

�h2

� �3=2

E1=2dE: ð17:2Þ

Eg

E

Conduction band

Valence band

k

Figure 17.2 Parabolic electron energy–wave vector diagram for a direct bandgap semiconductor

1The effective mass differs from the free electron mass because of interactions between the electron wave and

the crystal lattice.
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The probability at temperature T of an electron being found in an energy state E follows Fermi–Dirac

statistics and is

f ðEÞ ¼ 1

1 þ exp ½ðE � EFÞ=kT �
: ð17:3Þ

In equation (17.3) EF, the Fermi energy, is that energy value for which the probability of the state

being occupied is 1
2
. At temperature T ¼ 0 all the energy states below EF are completely filled and

above EF they are completely empty. In equilibrium the electrons and holes have a common Fermi

energy. To obtain the total number of electrons per unit volume in the conduction band we integrate

over the range of energies. With Ec being the lowest energy in the conduction band, the concentration

of electrons in the conduction band is then

ne ¼ 2
2pmekT

h2

� �3=2

exp ½ðEF � EcÞ=kT �: ð17:4Þ

From equation (17.4) we see that the concentration of electrons in the conduction band markedly

increases as EF moves closer to the conduction band. (A change in EF by 0.5 eV corresponds to a

change of about 5 � 108 in the concentration of electrons in the conduction band.) The concentration

of holes in the valence band can be calculated in a similar way.

Equation (17.4) is invalid if the concentration of electrons in the conduction band is low and we

regard the electrons in the conduction band as forming a gas of classical particles obeying Boltzmann

statistics. The quantity before the Boltzmann term, 2ð2pmekT=h
2Þ3=2

, is the effective concentration of

levels in the conduction band.

There is a discrete set of allowed wave vectors for an electron in the crystal lattice. Figure 17.3(a)

shows an electron transition from an allowable state in the valence band, leaving a hole, into the

conduction band. Transitions without a change in wave number, as shown in Figure 17.3(a), occur in

direct gap semiconductors, e.g. GaAs. Figure 17.3(b) shows a transition in an indirect gap

semiconductor, in which the energy minimum of the conduction band is not at the same value of k

as that of the valence band. For the indirect bandgap case, e.g. in Si or Ge, the transition of the

electron from the conduction band to the valence band must involve a change in wave vector, which

contravenes the selection rule for an allowed electron transition. The transition can occur only if there

Figure 17.3 Electron excitation from the valence to the conduction band in (a) a direct gap and (b) an indirect
gap semiconductor. Occupied and vacant allowable states are shown as filled and empty dots on the parabolic
E=k curve
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is also an interaction with a quantized unit of mechanical lattice oscillation, or phonon,2 within

the crystal, in order to conserve momentum. For this reason only the direct bandgap materials are

efficient light emitters.

The energy band structure of the semiconductor may be modified by introducing impurity atoms

into the crystal lattice; this is known as doping. At small concentrations the impurity may replace

atoms without changing the crystal structure, and increase the conductivity either by releasing extra

electrons or by creating holes.

The crystal lattice may be able to accept a replacement of 1% or more of its atoms, but doping

usually extends only to the order of 1 in 103; a lightly doped semiconductor may have only one

impurity atom in 106 of the host atoms. Silicon atoms are in group IV of the Periodic Table and so

have four outer electrons. A donor impurity from group V with five outer electrons has one more

electron than required for covalent bonding with neighbouring silicon atoms. This additional electron

is much more easily lost to the conduction band, with an excitation energy of only 0.1 eV. Such an

impurity is a donor. On the other hand an acceptor impurity, such as boron (group III), has three outer

electrons and so contributes a hole to the valence band by allowing an electron from the valence band

to be localized at the boron atom. A silicon semiconductor with a group V donor is known as n-type,

and with a group III donor as p-type.

The new dopant-induced impurity energy levels are full, and are situated within the bandgap. The

donor energy levels of n-type are close to the conduction band, and the p-type acceptor levels are

close to the valence band, as shown in Figure 17.4. Increasing the electron concentration in the

conduction band moves the Fermi level close to the conduction band as given by equation (17.4).

Semiconductors with added donor or acceptor dopants are known as extrinsic, in contrast to those

which contain no dopants, which are known as intrinsic.

17.2 Semiconductor Diodes

A semiconductor diode is a junction between the two types of doped semiconductor, n-type in which

the dopant produces extra electrons, and p-type in which there are extra holes. When the p–n junction

is formed, electrons and holes diffuse across the junction forming a contact region which is depleted

Eg

semiconductor

Conduction
band

band
Valence

Intrinsic
semiconductor

p−type

Extrinsic

n−type
semiconductor

Extrinsic

Acceptor
levels

Donor
levels

Figure 17.4 Electron energy levels in a doped (extrinsic) semiconductor

2Phonons are discussed in detail in J. R. Hook and H. E. Hall, 2nd edn, Solid State Physics, John Wiley &

Sons, 1991. Their important property at issue here is that they have a larger wave vector for a small energy

compared with photons; hence a transition for a phonon in Figure 17.3 is almost a horizontal line.
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of charge carriers, known as the depletion layer. The depletion layer has a high resistance and a large

contact potential; an electric field develops across it due to the dipole layer of positively charged

donors in the n-region and negatively charged acceptors in the p-region, preventing further diffusion.

In photodiode detectors (Chapter 20) photons are absorbed and generate electrons and holes within

the depletion layer of the junction; the intrinsic electric field between the n- and p-type regions then

transports these free charge carriers to give a current in an external circuit.

The development of the contact potential across the junction may be understood in terms of the

Fermi energy levels3 in the two components of the junction. In the intrinsic semiconductor, with no

doping, the Fermi level is midway between the valence and conduction band; thermal excitation is

sufficient for the energies of a small number of electrons to reach the conduction band. The impurity

bands of the doped material extend the valence band upwards for the p-type and downwards for the

n-type, and the Fermi levels are displaced upwards and downwards as shown in the diagrams of

Figure 17.5. The valence and conduction bands of the pure semiconductor are shown in Figure 17.5(a),

with the Fermi energy level between. The effect of doping is seen at (b), for the p-type, and at (c), for the

n-type; the Fermi levels are lowered and raised as shown. When the two types of semiconductor are in

contact, electrons and holes can flow across the junction until the Fermi levels are equalized. The energy

levels adjust to give the same Fermi level, and the contact potential V0 is developed.

This potential difference develops in the depletion layer at the junction. The n-type becomes

positively charged, and the p-type negatively charged. An externally applied potential making the p-

type more positive is a forward bias (Figure 17.6), which increases the flow of electrons from the n-

region and holes from the p-region; the diode then has a low resistance. With reverse bias there is

only a small reverse current, and the resistance is high. With biassing the conduction band electrons

and valence band holes have different Fermi levels. Figure 17.7 shows the voltage–current

characteristic of a typical semiconductor diode.

The exponential form of the diode characteristic at low voltages follows from the probability that a

charge carrier can surmount the potential barrier at the junction; this is proportional to
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Figure 17.5 The development of a contact potential across a p–n junction, showing the Fermi energy levels
(a) in the pure material; (b) in p-type (with added acceptor impurities); (c) in n-type (with added donor
impurities); (d) when the junction is made

3In a metal at zero temperature the Fermi level is the energy of the highest occupied state, as shown in

Figure 17.1. As temperature increases, electrons move from below the Fermi level to higher states, providing

electrical conduction.
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exp½�eðV0 � VÞ=kT �. The diode characteristic relating current I to applied voltage V takes the form

I ¼ I0½expðeV=kTÞ � 1�: ð17:5Þ

17.3 LEDs and Semiconductor Lasers

The simplest light-emitting semiconductor diode is a p–n diode in a material such as gallium arsenide

(GaAs), illustrated in Figure 17.8. The active region of the diode is at the junction between layers of

p- and n-doped GaAs. The n-doped side of the junction contains mobile electrons in the conduction

Figure 17.6 A diode junction with forward bias V
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Figure 17.7 The voltage–current characteristic of a typical semiconductor diode. The diode symbol and the
current flow are shown in the inset
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Figure 17.8 Schematic illustration of a semiconductor homojunction diode laser
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band, and the p-doped side contains mobile holes in the valence band. Typical dimensions

are submillimetre, as shown in the diagram. The active laser material is grown on a substrate

selected so that the lattice spacings of the two materials are closely matched. In a laser diode the

parallel end faces of the crystal are cleaved and polished to form a laser resonant cavity. The surfaces

are often not given reflective coatings, since the reflection coefficients can be large enough due to

the high refractive index (for GaAs, n ¼ 3:6, giving a reflectivity, calculated from the Fresnel

equation (5.30), of 32%). A simplified diagram of the energy band structure is shown in Figure 17.9.

The donor and acceptor concentrations are sufficiently large that the Fermi level is in the conduction

band for the n-type material and in the valence band for the p-type material. The electrons in the

conduction band and the holes in the valence band act as degenerate gases, and equation (17.4) no

longer strictly applies.

When a current passes in the forward direction, electrons from the n-doped side of the junction

are injected at high density into the p-region of the junction, and holes from the p-region into the

n-region. The electrons and holes recombine to emit photons; this mechanism of radiative

recombination is the basis of the LED and the semiconductor laser. The electron–hole recombination

time (�10�9s) is equivalent to the radiative lifetime of an atom or molecule in a gas or an ion in a

doped crystal laser material.

For the semiconductor diodes used in LEDs and lasers the p- and n-regions are heavily doped

(� 0:1%) to give a large population inversion; the n-type material is more heavily doped than the p-

type material and may be denoted by nþ. When the junction is formed, the movement of electrons and

holes causes the n-region to be depleted of majority electron carriers and the p-region to be depleted

of majority hole carriers. The contact potential V0 creates a barrier to further electrons moving from

the n- to p-region or to further holes moving from the p- to n-region.

When the junction is forward biassed (by giving the p-region a positive potential V with respect to

the n-region), carriers are injected, the band energies are modified and the junction potential is

reduced to (V0 � V). Filled electron states in the conduction band have energies above those of hole

(empty electron) states in the valence band as shown in Figure 17.9. In a heavily doped p–n junction

the concentration of electrons in the bottom of the conduction band can be much greater than in the

top of the valence band. This is equivalent to a population inversion and stimulated recombination

radiation can occur; this is the basis of gain and laser action in the diode laser.

Current flows in the p–n junction by injection of minority carriers – electrons into the p-region and

holes into the n-region. To maintain electrical neutrality in the n- and p-regions the concentrations of

mobile electrons in the n-region and holes in the p-region rise to balance the injected excess carriers.

Figure 17.9 Radiative recombination in a strongly forward-biassed p–n junction. An electron undergoes a
transition from the conduction band to the valence band, providing a photon
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The injected excess carriers are removed by recombination of electrons and holes; an electron with

energy in the conduction band falls into an empty electron state of lower energy in the valence band.

Either this produces an emitted photon or the energy is lost non-radiatively.

The concentration of electrons in states at the bottom of the conduction band can be much greater

than the concentration of electrons in states at the top of the valence band. With ne electrons per unit

volume in the conduction band and nv electrons per unit volume in the valence band, then ne > nv.

The gain of the laser from equation (15.25) is

gðnÞ ¼ l2A21

8pn2
gðnÞ n2 �

g2

g1

n1

� �
: ð17:6Þ

For the semiconductor laser n2 � ne and n1 � nv; A21 is the electron–hole radiative recombination

rate, gðnÞ is the lineshape function and n is the refractive index of the medium. The normal situation is

that there is a high density of holes in the valence band such that nv � 0. Then the gain coefficient is

gðnÞ ¼ l2A21

8pn2
gðnÞne: ð17:7Þ

The radiative recombination transition is homogeneously broadened with a Lorentzian lineshape and

linewidth �n. At line centre n0 and assuming gðn0Þ ¼ 2=p�n the gain coefficient is

gðn0Þ ¼
l2A21ne

4p2n2�n
: ð17:8Þ

From equation (15.32) the threshold gain for a gain length L and k losses per unit length, excluding

reflector losses, is

gthr ¼ k þ 1

2L
ln

1

R1R2

� �
ð17:9Þ

where R1 and R2 are the reflectivities of the laser cavity mirrors. The inversion required to reach laser

threshold is when gðn0Þ ¼ gthr such that

ðneÞthr ¼
4p2n2�n

l2A21

k þ 1

2L
ln

1

R1R2

� �� �
: ð17:10Þ

The loss coefficient k in the laser diode is mainly from scattering. Forward biasing of the diode

produces a threshold injection current which enables the population ðneÞthr to be established and the

gain then depends on the current flowing in the diode. In equilibrium the rate of injection of carriers

must equal the rate Re at which they are lost by radiative recombination and non-radiative processes.

In the main form of diode laser, the double heterojunction described later, almost all the injected

carriers recombine in the junction region. For injection current I and gain region with depth d, width

w and length l, giving an active volume dwl, the rate of loss of carriers ¼ Rene ¼ I=eðdwlÞ. The

threshold current Ithr is then

Ithr ¼ eðdwlÞ Re

A21

� �
4p2n2�n

l2
k þ 1

2L
ln

1

R1R2

� �� �
: ð17:11Þ
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It is useful to write the threshold current in terms of the current density, defined as the flow of

electrons per unit area per unit time, Jthr ¼ Ithr=wl. The threshold current density is

Jthr ¼
4p2n2ed�n

l2

Re

A21

� �
k þ 1

2L
ln

1

R1R2

� �� �
: ð17:12Þ

The active region shown in Figure 17.8 is the region in which laser gain is possible and its height d is

determined by the diffusion of the charge carriers. The stimulating laser radiation inside the laser

cavity occupies a mode volume whose height D may be greater than d. Where the radiation mode

depth D is greater than the gain depth d the threshold current increases in the ratio D=d. The ratio

A21=Re¼ (radiative recombination rate)/(total rate of recombination) is the internal quantum

efficiency of the laser. The gain coefficient of semiconductor lasers is typically 10 000 m�1 and

losses are typically 1000 m�1. The recombination radiation is homogeneously broadened with a

linewidth of about 20 nm and about 5 nm for the quantum well laser described later.

The light output power from a semiconductor laser as the diode current increases is shown in

Figure 17.10. Up to a threshold current light is emitted by spontaneous emission, and the diode acts as

an LED. Above the threshold current laser action starts, and stimulated emission begins to dominate

spontaneous emission. Beyond the threshold the efficiency of conversion of electrical energy into

light increases rapidly. A fully efficient laser would produce one photon for each injected electron.

The rate of carrier injection above threshold is ðI � IthrÞ=e. The formal definition of efficiency h is as

follows: for a laser with drive current I and a threshold current Ithr, the output power of the laser at

wavelength l is

P ¼ Z
hc

el
ðI � IthrÞ; ð17:13Þ

where Z < 1 and accounts for the fraction of injected carriers that combine radiatively and generate

laser photons.

The beam from a semiconductor laser such as that in Figure 17.8 is emitted in the plane of the

junction; here the path through the lasing material is greatest. The laser cavity is formed by polishing
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Figure 17.10 Light output from a semiconductor laser diode with variation of injection current
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the ends of the diode. The beam is usually elliptical in cross-section, since the emitting area is

rectangular. As expected from diffraction theory, small dimensions produce large divergence angles.

The emission photon energy of the semiconductor laser is close to the bandgap energy Eg. In GaAs

Eg ¼ 1:43 eV and the wavelength of the GaAs diode laser is about 870 nm; the typical spontaneous

linewidth is 20 nm, due to the energy distribution of electrons and holes in the conduction and valence

bands respectively.

As an example, for the homojunction GaAs laser diode, l ¼ 870 nm;�n � 1013 Hz; n ¼ 3:6. It is

found that the laser diode is highly efficient so that we may assume that A21=Re � 1. Typical diode

dimensions are l ¼ 0:5 mm; d ¼ 2 mm;w ¼ 0:2 mm and k ¼ 1 mm�1. Then the theoretical value is for

Jthr � 500 A cm�2 and the threshold diode current is Ithr ¼ 0:5 A. A more rigorous calculation would

take into account the band structure more precisely. Practical values of the threshold current density

for the homojunction laser are about 105A cm�2. The higher practical current density arises from the

relatively large thickness of the active region and the spread of the beam into the p- and n-regions

where there is absorption. This value may be reduced by operating the laser at the low temperature of

liquid nitrogen to reduce the population in higher levels. The homojunction laser normally has to

be operated in pulsed mode to minimize temperature rise from the high current density and resistive

heating in continuous operation. The junction region has relatively high resistance since the charge

carriers are neutralized compared with the neighbouring p- and n-regions. The active volume can

be reduced by reduction in the depth or width of the active region. The addition of Al to the active

layer forms GaAlAs which is also a direct bandgap material, and increases the bandgap. GaAlAs

lasers are able to generate wavelengths from 750 to 850 nm; the most usual wavelength of 780 nm is

used in the CD player, laser printers and other common applications.

The efficiency of light emission from the LED depends on the relative rates of radiative

recombination to the non-radiative mechanism of conversion to phonons. The presence of total

internal reflection in the device also affects the emission by reflecting back some of the emitted light.

The critical angle for total internal reflection from a medium of refractive index n2 to a medium of

refractive index n1 is yc ¼ sin�1ðn2=n1Þ. Light emitted from the active layer at an angle greater than

yc will be reflected back. For the GaAs LED, for which n2 ¼ 3:6; yc ¼ 16�. The fraction of light able

to escape into air is ½1 � ð1 � n2
1=n

2
2Þ

1=2�. Then for GaAs a fraction 0.05 can escape. This fraction is

increased by placing a hemispherical dome of high refractive index on the LED to reduce the total

internal reflection.

17.3.1 Heterojunction Lasers

More efficient diode lasers employ layers of different materials at the junction: they are known as

heterojunction and have largely replaced the homojunction lasers we have described so far. The

heterojunction is formed between two different semiconductors with different bandgap energies;

typical materials are GaAs and AlGaAs. The double heterojunction is the most common form in

which the active layer of one semiconductor is sandwiched between two cladding layers of another

semiconductor.

One form of double heterojunction is shown in Figure 17.11; here the active region is a thin layer of

GaAs which is sandwiched by p- and n-regions of AlGaAs. In the heterostructure the crystal lattice

periodicities should be closely matched to avoid interface dislocations; this is achieved in GaAs/

AlGaAs where the lattice periods are respectively 564 pm and 566 pm.

The heterojunction has three significant advantages over the homojunction. First, the cladding

layer, e.g. AlGaAs, has a larger bandgap than GaAs, so that it traps the charge carriers in the central

region where recombination is more probable; this is known as carrier confinement. Second, an active
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region of higher refractive index can be formed which acts as a light guide, concentrating the light

and increasing the efficiency of stimulated emission; this is termed optical confinement. Third,

the laser emission is only weakly absorbed in the adjacent regions so that the losses are minimized.

These three effects result in a much reduced threshold current density (�103A cm�2) compared with

the homojunction, allowing continuous wave operation at room temperature. The threshold current

may be further reduced by confining the current in the active region to a narrow stripe along the

length of the diode.

An important extension of the double heterostructure is made by reducing the thickness of the

central active region so that it becomes comparable with the electron or hole de Broglie wavelength

given by l ¼ h=p, where p is the electron or hole momentum. Since in the double heterostructure

electrons and holes are confined to the central region, where the bandgap Eg is smaller than that for

the cladding region, the electrons and holes are confined within a potential well. The energy levels for

electrons and holes in the potential well are quantized to values dependent on the well dimensions.

These structures are referred to as quantum wells. The quantum well lasers based on these types of

structures have increased gain and reduced current threshold and have become the predominant

structure for semiconductor lasers. Further confinement of the charge carriers has been enabled by the

use of a stripe geometry in which the injection current is confined to a narrow width. In this way the

current flows through a smaller area and a certain current density can be achieved for a lower total

current. The stripe laser diode is able to operate with threshold currents down to 50 mA.

A semiconductor quantum well laser operating on a fundamentally different principle is the

quantum cascade laser. It works on electron transitions between discrete levels in the conduction

band which arise from the quantization of electron motion perpendicular to the plane of the active

layer. This mechanism involves only the electrons in the conduction band and is to be contrasted with

the normal semiconductor laser based on electron–hole recombination. The quantum cascade lasers

produce radiation over a range of long infrared wavelengths.

17.4 Semiconductor Laser Cavities

The fabrication of diode lasers involves the deposition of multiple layers of single crystals with lattice

matching and precise thicknesses. The substrate is also selected to match closely the lattice spacing of

the deposited layer. In the semiconductor laser the optical resonator is often made by directly using

the cleaved ends of the crystal as mirrors. A more efficient alternative is to use reflection from a

periodic variation of refractive index within a layer coated on the ends of the active region, forming a

multi-layer mirror known as a Bragg reflector. Reflection at this periodic structure is wavelength

AlGaAs (p)

AlGaAs (n)

Substrate n+ –GaAs

GaAs

1 µm

1 µm

0.15 µm

Figure 17.11 Diagram of a double heterostructure laser in which the active GaAs layer (shown hatched) is
sandwiched between p- and n-regions of AlGaAs
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sensitive; components reflected at each step are in phase if the periodic spacing � satisfies the Bragg

condition 2neff� ¼ ml, where neff is the effective refractive index and m is an integer. A suitable

choice of � selects a single mode of oscillation for the laser. An example is shown in Figure 17.12(a),

where a distributed Bragg reflector (DBR) is positioned at each end of the active region. A similar

effect is obtained if the periodic variation in refractive index extends throughout the active gain

region, when the resonant modes of the cavity are restricted to wavelengths satisfying the Bragg

condition; this is called a distributed feedback (DFB) laser. In the DBR and DFB devices the periodic

variation in refractive index is achieved by periodic variation of the thickness of one of the cladding

layers to change the effective refractive index. The selection of wavelength which is available in the

DFB lasers is important in the use of multiple wavelengths in optical communications.

Semiconductor lasers which generate laser light parallel to the surface of the diode junction

interface, as shown in Figure 17.8, are called edge emitting lasers. An important alternative type is the

vertical cavity surface emitting laser (VSCEL), shown in Figure 17.13, in which the laser beam is

emitted parallel to the junction surface. In this structure, since the length of the active region is very

small in the output direction, high reflection coefficients are required to form the laser cavity. This is

achieved by cladding with Bragg reflectors on both sides. VCSELs operate with a high efficiency and

a low current threshold. They can be packed into two-dimensional arrays in which the individual

lasers can be individually addressed. The broad area facet of the diode laser shown in Figure 17.13

provides multiple transverse mode output. Single transverse mode can be achieved by reducing the

width of the active region to 	 5mm using a narrow-stripe electrical contact, and also by reduction in

the threshold current, and is able to give output powers up to about 100 mW. Greater output power up

to 5 W is obtained using a linear diode array of stripes on a single substrate, with the individual stripes

sufficiently close such that they are phase locked and emit coherently. Several diode arrays can be

p-type
p-type

n-type n-type

Periodic grating

Active layer

(b)(a)

DBR DBR

Figure 17.12 Distributed Bragg reflectors in resonant laser cavities: (a) as mirrors at either end of a cavity;
(b) distributed throughout the length of the cavity, in the DFB laser

Bragg reflector

Active layer

Bragg reflector

p

n

Figure 17.13 Diagram of a vertical cavity surface emitting laser (VCSEL)
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combined to form a linear diode bar, and for the highest power several diode bars can be arranged to

form a stack in a two-dimensional structure. Output powers from diode bars up to 20 W are produced

and output powers in excess of 1 kW from diode stacks.

The beam emitted from a heterojunction diode laser at the output facet (the near field) has an

elliptical shape with typical dimensions in the directions perpendicular and parallel to the junction

plane of 1 and 5 mm. In propagation the beam size expands in the perpendicular (fast-axis) and

parallel (slow-axis) directions by diffraction. Assuming a Gaussian beam profile, the divergence half

angle y ¼ 2l=pd, the beam divergence perpendicular to the junction is typically y � 20� and is larger

than the beam parallel to the junction where y � 5�.

17.5 Wavelengths and Tuning of Semiconductor Lasers

The direct gap semiconductor GaAs is typical of the large group known as III–V lasers based on a

combination of elements from the third group of the Periodic Table (e.g. Al, Ga and In) and from the

fifth group (N, P, As and Sb). The ternary alloys AlGaAs and InGaAs and quaternary alloys such as

InGaAsP also fall in this group. These produce emission wavelengths over the range 610 to 1600 nm,

covering the range of optical communications as well as for reading and writing CDs, and DVDs,

metrology and laser pointers. Table 17.1 lists some common semiconductor lasers.

As we remarked in Chapter 15, laser action becomes more difficult to induce at shorter

wavelengths: covering the whole visible spectrum requires special attention to lasers producing

blue light. Semiconductor lasers based on nitride compounds, e.g. InGaN, provide continuous

Table 17.1 Emission wavelengths of various semiconductor lasers

Wavelength region Active semiconductor material Wavelength range

Ultraviolet/blue Group III nitride: GaN 370–490 nm

GaInN 380–490

ZnSe 460–490

ZnCdS 300–500

ZnCdSe 500–700

Frequency-doubled AlGaAs 460–480

Visible Heterojunction, quantum well

or VCSEL structures:

CdSeS 500–700 nm

GaAsP 600–900

AlGaInP 620–580

AlGaAs 700–920

InGaAsP 700–900

Near-infrared GaAs 0.8–0.9 mm

GaAsSb 1.0–1.7

InGaAs 1.0–3.2

InGaAsP 1.2–1.6

InAsSb 3.0–5.5

Mid-infrared Lead salt (PbS, PbTe, PbSe, PbSnTe) 3.0–30 mm

HgCdTe 3.2–15

Cascade lasers 3.0–24, 65–87
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emission in blue and ultraviolet light, at 380–450 nm, with particular application in optical data

storage, spectroscopy and biophotonics. Lasers based on the combination of elements from the

second group (Cd, Zn) with those from the sixth group (S, Se), called II–VI lasers, give wavelengths

in the blue–green region due to the larger bandgap compared with the III–V compounds.

Wavelengths in the mid–infrared (4 to 30 mm) are produced by the Pb salts of IV–VI compounds

(S, Se and Te)–however, these sources must be operated at low temperatures, and it may be preferable

to use the quantum cascade laser described above.

The wavelength of oscillation of a semiconductor laser must lie within the comparatively broad

band determined by the electronic band structure, within which there can be a number of cavity

resonances (Figure 17.14).

The bandwidth of the recombination radiation spontaneous emission is determined by the

distribution of density of states for the conduction and valence bands and is influenced by

temperature. The typical width of spontaneous recombination radiation from a heterojunction laser

at room temperature is 20 nm and is reduced to about 5 nm in a quantum well laser. The linewidth of

the laser emission is much smaller due to the narrowing from the laser gain and the laser cavity. The

resonances are often well separated, since there is only a small spacing between the polished faces of

the crystal forming the Fabry-Pérot resonator. The laser can operate with many longitudinal modes

covering the spectral width of the spontaneous emission, but since the transition is homogeneously

broadened a single mode near line centre will dominate at low power. The separation between

resonances is the free spectral range, which we have already encountered in the performance of

spectrometers (Chapter 12). It is possible to tune the cavity resonance by mechanical pressure to

change its length, by heating to change the refractive index ðdl=dT � 0:2 nm K�1Þ, or by varying the

junction current; the available range of laser action of a single mode is, however, limited to the free

spectral range, since the laser oscillation will otherwise jump to an adjacent mode.

The free spectral range depends on the dispersion due to the refractive index of the semiconductor

crystal as well as its length. For the N th longitudinal mode in a resonator with length L and refractive

index n

N ¼ 2nL

l
: ð17:14Þ

FSR

FP cavity
resonance

Transition bandwidth

Frequency

Figure 17.14 The tuning range of a semiconductor laser. The free spectral range limits the range achievable by
tuning the cavity resonances
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The spacing dl between resonant modes, where dN ¼ �1, is found by differentiation:

dN ¼ �1 ¼ 2L

l
dn

dl
dl� 2nL

l2
dl ð17:15Þ

dl ¼ l2

2nL
1 � l

n

dn

dl

� ��1

ð17:16Þ

or in terms of frequency the tunable bandwidth is

dn ¼ c

2nL
1 þ n

n

dn

dn

� ��1

: ð17:17Þ

For example, an infrared diode at wavelength 1 mm (n ¼ 30000 GHz) may have a resonator with

L ¼ 0:5 mm, n ¼ 2:5 and dispersion ðn=nÞdn=dn ¼ 1:5. The free spectral range is then 24 GHz. Note

the comparatively large contribution of the dispersion in the refractive index.

Selection of the precise operating wavelength of the diode laser can be made by several techniques:

by the use of a secondary coupled cavity, by DFB or DBR, or by injecting light from another laser,

termed injection locking. Tuning of the wavelength of the diode laser across its gain profile can be

made by mounting the diode laser in an external cavity, Figure 17.15. The cavity contains a grating in

a Littrow mounting and diffracts about 0.15 of the incident power back in first order into the laser

diode. The wavelength-selective feedback modifies the gain of the laser diode, and laser linewidths

down to 10 kHz can be generated.

At low powers the diode laser typically oscillates in many longitudinal modes. With increase in

injection current the laser changes into one or a few longitudinal modes. The theoretical spectral

linewidth of a single longitudinal mode of a diode laser may be calculated using equation (16.7),

�nL ¼ 2phnð�ncavÞ2=P. A GaAs laser operating at 870 nm at a power of 5 mW may use a typical

Fabry-Pérot resonator of length 0.5 mm, refractive index 3.6 and operate with end reflectors with

reflectivities of 0.3. From equations (16.6) and (16.17), the cavity linewidth is

�ncav ¼ cð1 � RÞ=2pnL, from which �ncav � 2 � 1010 Hz. The theoretical minimum linewidth is

then �nL ’ 105 Hz. Practical operating linewidths are much larger, typically 
 10 MHz.

17.6 Modulation

Communications via optical fibres may achieve large bandwidths, usually using pulse sequences

formed either by switching on and off a laser source or by using an external modulator. A directly

Collimator

Grating

Laser output

Laser
diode

Figure 17.15 External cavity diode laser
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modulated semiconductor laser requires a switched current source, which for low-power lasers can

easily be provided for a bit rate up to 109s�1 (1G bit s�1), and local communication networks often

use this simple system. The main disadvantage is that the laser frequency changes during the short

pulse, so losing the advantage of narrow bandwidths in avoiding the dispersion problems discussed in

Chapter 6.

The bit rate in pulse modulation is limited by the delay in the laser output as the current is switched

on and while the population inversion is built up. There is also an initial short-duration oscillatory

instability or relaxation oscillation, similar to those that appear in other pulsed lasers such as the

flashlamp pumped solid state laser, due in this case to a resonance between the carriers and photons

in the cavity. Pulse durations of a few nanoseconds can be produced, with rise and fall times less

than 1 ns.

External modulation of a free-running laser is used for long-distance communications, routinely

using a bandwidth of 10 GHz. The modulation may be either by a semiconductor in which the

transmission of light may be switched on and off by applying a voltage, or by an interferometer

similar to the Mach–Zehnder (Section 9.3). The semiconductor device is an electro-absorption

modulator, or EAM. Light is guided through an absorber region located between p-doped and

n-doped semiconductor regions, in which the population of absorbing electrons is switched by an

electric field. An EAM is often incorporated in the same structure as the laser diode itself.

The Mach–Zehnder modulator is used for the higher power lasers which are necessary for long-

distance communications. The laser light is split between two paths, one or both of which contain a

dielectric material, such as lithium niobate, whose refractive index may be changed by applying an

electric field (the Pockels effect, see Section 7.11). The phase difference between the light emerging

from the two paths depends on the applied field, and their sum may be switched between constructive

and destructive interference. The bit rate may be 10 G bit s�1 or higher.

Lasers and LEDs may also be modulated in analogue mode, as a continuous oscillator with a

modulated injection current. In lasers the maximum attainable modulation bandwidth is limited by

the carrier lifetime, determined by the spontaneous and stimulated emission processes, and the cavity

(photon) lifetime, determined by the cavity losses. The very short cavity lengths of semiconductor

lasers lead to low values of the cavity and photon lifetimes. Depending on the type of semiconductor

laser, the carrier lifetime is typically 10 ps and the photon lifetime about 2 ps, giving bandwidths

greater than 1 GHz. An increased bandwidth is obtained for shorter cavity lifetimes and at higher laser

powers.

The carrier lifetime in a LED is considerably longer than it is in a laser, where it is shortened by

stimulated emission recombination. The available bandwidth is correspondingly smaller; a double

heterostructure LED has a typical response of about 100 MHz.

17.7 Organic Semiconductor LEDs and Lasers

Organic materials are usually encountered as electrical insulators, and not as sources of light. Fireflies

show us that there are other possibilities: they use the chemical excitation of organic molecules to

produce light in a process with very high overall efficiency. Electroluminescence, which is described

in Section 18.11, is the emission of light following electrical excitation, is achieved in certain solid

organic materials by applying a high electric field to a thin layer of organic polymer. Electrons and

holes are injected as in semiconductor diodes; recombination then leads to photon emission with

photon energy determined by the energy of a bandgap. This LED source may also act as a laser, with

laser action achieved by using reflecting electrodes which form a resonant cavity.
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Electroluminescent organic materials offer considerable practical advantages in the production of

matrix displays, which may be used for example in computer displays, instrument panels and motorway

indicators. A matrix display might require many millions of individually controlled light-emitting

elements, often using three colours. The development of such complex devices is a major task; we are

concerned here only with the basic physical processes of a single element of such an array.

An organic polymer which is sufficiently conducting for electrical excitation may still require a

field of order 107 Vm�1 for efficient operation. Thin films only 100 mm thick are therefore used,

requiring only 2–3 volts between electrodes, one of which is a thin transparent conductor such as an

alloy of magnesium and silver. The conducting polymer is usually a so-called p-conjugated polymer,

in which there is a long chain of alternate double and single carbon–carbon bonds. The conductivity

depends on electrons which are ‘delocalized’ along this backbone. Electrons emitted by one

electrode, and holes emitted by the other, recombine forming an excited molecule known as an

‘exciton’: if this does not decay and lose its energy by interaction with adjacent molecules it will emit

a photon at a wavelength determined by its molecular structure.4 Efficient electroluminescence was

demonstrated in 1990 by Richard Friend in Cambridge University, using the p-conjugated polymer

poly(p-phenylene vinylene), known as PPV. Based on this material, a luminous efficiency of over 20

lumens per watt was achieved a few years later.

Figure 17.16 shows the luminescence spectrum of PPV when optically excited. Optical excitation

is achieved without metal electrodes, so that the natural wide bandwidth of luminescence is observed.

If the thin film is contained within a resonant cavity, which may be formed by electrodes or by tuned

dielectric mirrors, laser action may produce a sharp spectral line as shown.

Problem 17.1
(a) Why is the spectral width of a semiconductor laser much less than for an LED, and much greater than for a

typical gas laser?

(b) Why is laser output not observed on all the allowed longitudinal frequencies within the spontaneous spectral

profile?

(c) What are the main differences between the output characteristics of an LED and a semiconductor laser?

How do these affect the coupling of light into an optical fibre?
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Figure 17.16 Photoluminescence spectra of a thin film of PPV (a) free-space emission (b) within a resonant
cavity, showing laser action. (Friend et al, Nature 397, 121, 1999).

4The resonance of conjugated polymers at optical wavelengths is significant in their occurrence as opsins in

vision and as chlorophyll in photosynthesis–see Chapter 21.
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(d) How may a semiconductor laser be configured to produce (i) the fundamental single transverse mode, or

(ii) the single frequency longitudinal mode?

Problem 17.2
At 860 nm GaAs has a refractive index of about ns ¼ 3:6. (a) Determine the critical angle for GaAs.

(b) Assuming that the emission from an uncoated planar and thin surface of a sample of GaAs is into air with

refractive index na, show that the fraction of light emitted is approximately n2
a=2n2

s. Estimate this fraction for

GaAs. Discuss how this emitted fraction might be increased.

Problem 17.3
An injection laser has a loss coefficient per unit length k and a region of gain of length L. The two crystal faces

have reflectances R1 and R2. Show that the threshold gain per unit length gth is k þ 1=2L lnð1=R1R2Þ.

Problem 17.4
The threshold gain gth of an injection laser is related to the threshold current density Jth as gth ¼ bJth, where b is

the gain factor. Consider an injection laser with a gain factor b ¼ 2:1 � 10�2A�1cm3, a loss coefficient 10 cm�1

and an optical cavity of width 100mm and length 250 mm. The semiconductor medium has a refractive index of

3.6 and the cleaved end faces of the cavity are uncoated. Assuming that the injection current is confined to the

optical cavity, determine the threshold current of the laser. (This indicates that typically the current in an

injection laser is low.)

Problem 17.5
The output power of an injection laser may be expressed as P0 ¼ AðJ � JthÞZiðhn=eÞ½ð1=2LÞ lnð1=R1R2Þ�=
½k þ ð1=2LÞ lnð1=R1R2Þ�: Here J and Jth are the actual and threshold current densities, Zi is the internal quantum

efficiency and k is the loss coefficient.

A GaAlAs semiconductor laser has an active length of 300mm, width 10 mm and depth 0.5 mm. The

reflectances of its coated emission surfaces are both 0.9. It has a loss coefficient from scattering of 1000 m�1 and

its internal quantum efficiency is 0.7. Estimate the efficiency of the laser. (This indicates that the efficiencies of

injection lasers can be high.)

Problem 17.6
The threshold current density of an injection laser is found to vary exponentially with temperature as

J ¼ J0 expðT=T0Þ, where T0 is the temperature coefficient. A GaAs injection laser has a threshold temperature

coefficient T0 ¼ 160 K. When operated at 20�C the threshold current density is 2500 A cm�2. Determine the

threshold current density when operated at 80�C. (This indicates that the semiconductor devices are strongly

temperature dependent.)

Problem 17.7
Show that the minority carrier lifetime of an LED is t ¼ ðew=JBÞ1=2

, where e is the electronic charge, w is the

width of the active region, J is the injection current and B is the electron–hole recombination coefficient.

Describe the mechanism determining the modulation bandwidth of a light-emitting diode (LED).

Problem 17.8
A light-emitting diode has a Lorentzian spontaneous emission spectrum with a full width at half maximum

(FWHM) of 1013Hz and a centre wavelength of 680 nm. Calculate (a) the linewidth of the emission spectrum in

wavelength, (b) the coherence time, (c) the coherence length of the LED light.

Problem 17.9
The frequency response of an LED with minority carrier lifetime t and operating with an optical power Pðf Þ at

frequency f is of the form Pðf Þ ¼ Pð0Þ=ð1 þ 4pf 2t2Þ1=2
.
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A GaAs LED has an effective recombination region of width 0.2 mm and a recombination coefficient

B ¼ 7 � 10�16m3s�1 and is operated at a current density of 2 � 107A m�2. Calculate the 3 dB modulation

bandwidth of the LED. Comment on why this should be regarded as an upper limit.

Problem 17.10
What effect do the dimensions of the active optical region of a semiconductor laser, including the size of the

emitting aperture, have on the radiation characteristics of the laser?

Problem 17.11
A thin disc of GaAs, refractive index 3.6, intercepts a 10 mW light beam of near monochromatic light of

wavelength 630 nm for which the absorption coefficient is 5 � 104cm�1. The bandgap of GaAs is 1.42 eV. For a

disc of 1 mm thickness determine: (a) the power absorbed by the disc, (b) the power deposited in the crystal, (c)

the rate of photon emission from the disc, (d) power radiated from the disc. Assume that the efficiency for the

generation of recombination radiation is 0.6.

Problem 17.12
Light from an LED with an active area As is to be coupled from a medium with refractive index nm into an optical

fibre which has a numerical aperture NA and a fibre core area Ac, with As < Ac.

Show that the coupling efficiency Zc ¼ ðNAÞ2=n2
m.

Problem 17.13
For an acousto-optical modulator show that the first-order deflection angle for light of wavelength l is given by

sin y ¼ l=2�, where � is the wavelength of the sound in the modulator. What factors determine the power in the

deflected beam?

A lithium niobate (LiNbO3) acousto-optical modulator is to be used to impress a 50 MHz signal on the light

beam from an AlGaAs laser (l ¼ 830 nm) operating in the fundamental TEM00 mode. The velocity of sound in

LiNbO3 is 6:6 km s�1. Estimate the maximum diameter of the laser beam which can be modulated. Comment on

how the irradiance of the modulated beam can be optimized.

Problem 17.14
The operating wavelength of a semiconductor laser can be changed by changing the temperature of the laser.

Three relevant temperature-dependent parameters which affect the wavelength are refractive index,

cavity dimensions and position of the peak of the gain profile. Make an assessment of their relative

magnitudes.
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18 Sources of Light

Fiat lux.

Genesis 1:3 (Vulgate).

Light visible to the human eye, covering wavelengths from 380 to 780 nm, is generated by a variety of

mechanisms, which we may classify broadly as classical electromagnetic, thermal and quantum.

These processes extend beyond the visible spectrum, the quantum processes becoming relatively

more important at higher energies. In this chapter we consider the electromagnetic radiation from an

accelerated charge, and the quantized model of the atom which leads to the formation of spectral

lines. We also describe some of the practical sources of light, both natural and artificial.

18.1 Classical Radiation Processes

Although the interaction of light with matter must ultimately be considered in terms of photons, there

are many circumstances when a classical electromagnetic theory of radiation in terms of accelerated

charges provides a simple and remarkably complete description.

In the first part of this chapter we consider examples of classical radiation processes in which an

isolated electron is accelerated either in the electric field of a positive ion, as in a dilute ionized gas, or

when its motion is deflected by a magnetic field, as in cyclotron and synchrotron radiation. Both

processes are enhanced in an interesting way when the electron has a very high energy. Classical

theory can also be applied to the scattering of light by individual free electrons (Thomson scattering)

and by individual atoms and molecules (Rayleigh scattering); the quantum approach becomes

essential when there is an exchange of energy between an atom and a photon. The various classical

and quantum scattering processes are described in Chapter 19.

18.1.1 Radiation from an Accelerated Charge

We first discuss briefly the basic equation for the radiation from a single accelerated charge. In

classical electrodynamic theory the electric field generated by a single charge has three components.

The first is the electrostatic field, whose strength varies as the inverse square of the distance from the

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



charge. A uniformly moving electron generates a second field component which is proportional to its

velocity; this field also falls away as the square of the distance from the charge. The third component

of the field is only present when the charge is accelerated. This is the radiation field, which falls away

only as the first power of the distance.

The strength of the radiation field at a point some way from the accelerating charge depends on the

component of the acceleration perpendicular to the line of sight. Since radiation reaches the field

point after a finite travel time, the acceleration must be measured at the time the radiation leaves the

charge rather than when it arrives (Figure 18.1). The component of the field perpendicular to the line

of sight is given by

E? ¼ � q

4pE0c2r
� a? ð18:1Þ

where by a? we mean:

1. The component of acceleration projected onto a plane perpendicular to the line of sight from the

field point to the charge.

2. The acceleration is measured at time r=c earlier, where r is the distance from the charge and c is the

phase velocity of the radiated wave. The radiated electric field is therefore always transverse and

perpendicular to the line of sight. The magnetic field B is also transverse; it is perpendicular to the

electric field E.

The total power radiated instantaneously by a non-relativistic particle with charge q and

acceleration a is given by the Larmor formula

P ¼ q2a2=6pE0c3: ð18:2Þ

18.1.2 The Hertzian Dipole

A dipole is a pair of equal and opposite charges separated by some distance. The product of

charge and distance is the dipole moment. A dipole whose moment oscillates sinusoidally, and

whose dimensions are small compared with the corresponding radiated wavelength, is known as a

Hertzian dipole. It radiates in the same way as a single oscillating charge, since the two

opposite charges oscillate with opposite accelerations and their radiated fields must therefore add.

Field point P

Electron path

Travel time r/c

rxt′

xt

Figure 18.1 Radiation from an accelerated electron. The radiated electric field at the field point P at a time t
depends on the acceleration of the electron at time t0 ¼ t � r=c
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We therefore consider only one charge q, moving linearly according to the complexified displace-

ment ~z

~z ¼ z0 expðiotÞ: ð18:3Þ

The component of acceleration as seen from the field point P at a distance r in free space, and in a

direction y from the axis of the dipole (Figure 18.2), is then easily found from equation (18.1), giving

a longitudinal component of the field

EðyÞ ¼ � o2qz0

4pE0c2r
sin y exp½ioðt � r=cÞ�: ð18:4Þ

The variation with y is known as the radiation pattern or polar diagram. This is shown in Figure 18.2

(b). The power polar diagram shown in Figure 18.2 (c) is the Poynting flux as a function of y; note
that the radiation pattern of a radio antenna is often plotted as a variation of power ðE2Þ rather than
field ðEÞ. The term r=c in the oscillatory function is already familiar in a propagating wave as the

phase term f ¼ or=c.

The total time-averaged power �P radiated by the dipole is found by integrating over a sphere the

time-averaged power flux E0cEðyÞ2, giving

�P ¼ 1

12pE0c3
o4q2z20: ð18:5Þ

The radiated power �P depends on the square of the dipole moment ðqz0Þ, and on the fourth power of

the frequency.

18.2 Free–Free Radiation

Light may be emitted by the electrons of an ionized gas either in discrete spectral lines or as a

continuum caused by their acceleration in the Coulomb field of ionized nuclei. The radiation from a

single electron in an ionized gas, accelerated as it encounters a positive charge, is known as free–free

radiation, to distinguish it from processes involving quantized energy levels. In the encounter the

Figure 18.2 Radiated field from a Hertzian dipole. (a) The field is aligned along the surface of a sphere, with
strength proportional to sin y=r. (b) The variation of field strength E with y (at constant distance from the
dipole) can be represented as a ‘polar diagram’. (c) The power polar diagram, showing the variation of Poynting
flux S with angle y
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electron loses energy; the radiation is therefore also known as bremsstrahlung (German for ‘braking

radiation’). (The acceleration of the nucleus need not be considered as it is smaller than that of the

electron by the ratio of their masses.)

The acceleration of the electron is in the form of an impulse, shown in Figure 18.3; it therefore has

a broad spectrum, in contrast to the narrow-bandwidth radiation from an oscillating dipole. The

closest encounters give the narrowest pulses, containing the highest frequencies: a full calculation of

the overall spectrum requires an integration over a range of impact parameters and electron energies.

An upper limit to the emitted frequency is set by the corresponding photon energy: this cannot be

greater than the original electron energy. This limit is encountered in an X-ray discharge tube, where

electrons are accelerated by a high voltage V . The minimum wavelength of the X-rays emitted when

the electrons reach the target anode is

lmin ¼
hc

eV
; ð18:6Þ

and there is a continuum of radiation emitted at lower frequencies. The emissivity of the gas is

proportional to neniZ
2, where ne and ni are the electron and ion densities and Ze is the nuclear charge.

Free–free radiation is encountered over a wide range of the electromagnetic spectrum, including

radio emission from interstellar clouds and the continuum emission from X-ray tubes; it is also

important in high-energy laboratory physics, since it is responsible for the energy loss of high-energy

electrons in solid matter.

18.3 Cyclotron and Synchrotron Radiation

An electron moving at right angles to a steady and uniform magnetic field follows a circular path with

a centripetal acceleration, and consequently emits electromagnetic radiation. When the electron speed

is v � c this is cyclotron radiation; when the electron is moving at relativistic speed v near c it is

synchrotron radiation.

Electron

Positive ion

(a)

(b)

y

t t

z

z y

+

Figure 18.3 Free–free, or bremsstrahlung, radiation from an electron accelerated in its encounter with a
charged nucleus. Two components of acceleration are shown: in the direction of travel z the electron speeds up
and slows down, while there is a single impulse normal to z
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Consider first an electron moving with v � c perpendicular to a magnetic field B. It follows an

orbit satisfying

evB ¼ mv2=R ð18:7Þ

where R is the radius of the orbit. The angular frequency of the electron in the orbit is ocyc ¼ eB=m,

known as the cyclotron frequency. The electron acceleration is

a ¼ vocyc ¼ veB=m: ð18:8Þ

From the Larmor formula, equation (18.2), the total power radiated by one electron is

P ¼ q2a2=6pE0c3 ¼ e2o2
cycv

2=6pE0c3: ð18:9Þ

The radiation is at the cyclotron frequency, orad ¼ ocyc.

In a synchrotron light source high-energy electrons are injected into a storage ring which confines

the relativistic electrons in a circular orbit by a magnetic field. The continuous inward acceleration of

the electrons produces synchrotron radiation, first observed in particle ring accelerators used in high

energy physics.

We consider high-energy electrons travelling at relativistic speed v near c and kept in a circular

orbit by moving perpendicular to a magnetic field. Special relativity theory shows that the only

change from equations (18.8) and (18.9) required near the light speed is to replace m by gm0, where

m0 is the rest mass and g � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. We can also set g ¼ E=m0c

2 where E is the total

relativistic energy (kinetic energy plus m0c2). The electron angular frequency is

osync ¼ c=R ¼ eB=gm0 ¼ ocyc=g: ð18:10Þ

Observed perpendicular to the orbit the acceleration is towards the centre of the circle, and a circularly

polarized wave is emitted along the magnetic field. A much more intense radiation is emitted in

directions close to the plane of the orbit; this must be calculated at distance r using the retarded time

ðt � r=cÞ, which has a large effect when the electron velocity is close to c. The effect is to compress the

time during which the electron moves towards the observer and stretch the time during which it is

receding (the relativistic Doppler effect; see Section 4.7). Since the electrons are moving at speeds near

c the radiation appears like a shock wave in the direction of the path of the electrons. Each time the

electron travels towards the observer a brief pulse of radiation is observed. The observed field therefore

consists of a regular series of pulses, separated by the orbital period of g=ocyc.

In its own frame of reference the accelerating electron emits a characteristic electric dipole radiation

pattern. As v approaches c, when viewed in the laboratory frame, the pattern becomes strongly peaked

in the forward direction, as shown in Figure 18.4(a). The light is emitted in the forward direction,

tangential to the electron’s orbit, and is linearly polarized with E in the plane of the orbit.

The angular width of the radiation pattern is y ’ 1=g ¼ m0c2=E. For E ¼ 1GeV and

m0c
2 ’ 0:5MeV the angular width is y ’ 5� 10�4 radians, indicating that the radiation is highly

collimated in the forward direction.

The observed pulse duration in the electron frame is t ¼ Ry=v ’ Ry=c, and in the laboratory frame

is t ¼ ðRy=g2cÞ. Substituting for R and y, the pulse duration is

t ¼ m0=g2eB ¼ ðm0=eBÞðm0c
2=EÞ2: ð18:11Þ
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The waveform of the radiation can now be Fourier analysed. It contains harmonics of the frequency

nsync ¼ osync=2p, usually closely spaced so that the spectrum is effectively a continuum up to a

frequency of order 1=t � g3nsync.
The relativistic analysis shows that for circular motion at arbitrary velocity, the power radiated is

still given by the Larmor formula, equation (18.2), but with an extra factor g4 on the right. Setting

v ¼ c in the centripetal acceleration, a ¼ c2=R, we obtain the total power radiated by the synchrotron

source as

P ¼ g4ðe2c=6pE0R2Þ: ð18:12Þ

Synchrotron sources provide intense broadband radiation which is well collimated. For many

purposes a specific wavelength band can be selected; storage rings typically provide radiation with

bandwidth �l=l ¼ 0:1%, with spectral radiance � 1022 photons s�1mm�2mrad�2. A smaller orbit

and a high electron energy promote higher power. The storage ring has a sequence of bending

magnets connected by linear sections which contain radio frequency cavities to replenish the energy

radiated by the synchrotron emission. To compensate for defocusing of the electron beam due to

Coulomb repulsion, quadrupole focusing magnets are used. The electrons orbit in bunches of a few

hundred particles; the bunches are a few picoseconds long, and are separated by a few nanoseconds.

Storage rings for X-ray production have a bending radius of 5 to 100m, a magnetic field of 1 T and

electron energies of 0.5 to 8GeV, giving wavelengths of 0.1 to 1 nm. Synchrotron machines with

energies up to 10GeV provide powerful sources of X-rays for diffraction analysis of many types of

organic and inorganic materials.

There are many sources of synchrotron radiation observed in radio astronomy, involving very high

electron energies and very low magnetic fields. Synchrotron radiation from some astronomical

sources produces visible light and even X-rays: for example, the light from the Crab nebula is

generated by electrons with cosmic ray energies, probably up to 1012eV, moving in a magnetic field

of the order of 10�6T. Interstellar gas contains a magnetic field of only 10�10T, but this is still

sufficient to accelerate cosmic ray electrons and produce measurable radio waves. By contrast, a

terrestrial electron synchrotron might have a field of 1 T, and visible light would be emitted by

electrons with energies of 109eV.

E

θ = 1/γ

Observer

Magnetic field

Orbiting 
electron

E

t

(a) (b)

Figure 18.4 Synchrotron radiation. (a) An electron gyrating in a magnetic field is viewed from a point in the
plane of its orbit. The radiated electric field (b) has a sharp maximum each time the electron travels towards the
observer.
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18.4 Free Electron Lasers

A free electron laser (FEL) converts some of the kinetic energy of a relativistic electron beam into

coherent electromagnetic radiation, providing a tunable, coherent, high-power source at wavelengths

from millimetres through infrared to visible, and potentially to ultraviolet and X-rays. This is

achieved by passing the electron beam through an alternating transverse magnetic field produced by

an array of magnets, known as an undulator or wiggler (Figure 18.5). The magnetic field reversals are

typically spaced around 1 centimetre apart, and may extend for about 1 metre. The resulting

alternating transverse motion of the electrons produces an electromagnetic wave, which travels with

the electron beam. The wave reacts back on the electrons, and induces a coherent motion, which gives

rise to coherent radiation similar to laser radiation. The emission wavelength depends on the energy

of the electron beam and the undulator periodicity.

For small deviations of the electron beam the lateral oscillation produces radiation at a wavelength

l ’ l0=ð2g2Þ, where l0 is the periodicity of the undulator and gm0c
2 is the relativistic energy of the

electron. The factor g�2 derives from two Doppler shifts: one as the electron beam encounters the

undulator and the second as the oscillating beam is observed in the laboratory frame. If the beam

deviations are large, the bending also produces synchrotron radiation, which may contain high

harmonics of the fundamental oscillation.

The description of the FEL as a laser is somewhat misleading, as it does not involve stimulated

emission between quantized levels as in the conventional laser. However, the radiation does feed

energy back into the electron stream, leading to enhanced radiation from the coherent motion of many

electrons. The electrons form bunches within the undulator, which is due to a velocity modulation as

they enter. The effect may be enhanced by forming a resonant cavity round the undulator, consisting

of mirrors at the ends (shown as M1, M2 in Figure 18.5). The efficiency of conversion of beam kinetic

energy to radiation is typically around 1% without a cavity, rising to over 10% with a cavity.

Radiation from the relativistic electron stream is confined to an angle � g�1 in the direction of the

beam, and it is coherent over a large wavefront, as in a conventional laser. The spectral purity of the

line radiation, n=dn, is approximately equal to the number of magnetic poles in the undulator.

An FEL can generate radiation at millimetre wavelengths from an electron beam with energy of a

few megaelectronvolts. A storage ring, generating electrons with energy 0.1 to 10GeV, may be used

for radiation at wavelengths in the micrometre to nanometre range. The emission has a time

dependence which follows that of the electron beam, which can be continuous or in pulses with

Figure 18.5 A free electron laser, showing the undulator and the lateral oscillation it produces in the electron
beam. The optical resonator cavity is formed by the mirrors M1, M2 and the magnetic field direction is shown by
the arrows.
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durations down to femtoseconds. The FEL has the potential to produce high average power up to

kilowatts, and high peak power. These characteristics make the FEL suitable for a wide range of

applications involving physical, chemical and biological materials.

18.5 Cerenkov Radiation

A charge moving with high relativistic velocity in a transparent dielectric may radiate without any

applied acceleration, if its velocity is higher than the local phase velocity of light; this is Cerenkov

radiation, which is important, for example, when a cosmic ray particle enters the Earth’s

atmosphere.

It is easy for a boat to travel faster than the waves it generates, and it is commonplace for an

aircraft to travel faster than the speed of sound. In both cases a sharp wavefront travels out in a V-

shape, with half angle whose sine is the ratio between the group velocity of the waves and the

velocity of the vehicle. By analogy, it might be expected that electromagnetic waves can be

generated by a charge moving faster than the wave velocity c=n. Light emitted from an electron

moving with a relativistic velocity in a medium with n > 1 was first observed by P. Cerenkov, and is

named after him.

We note first that the electron itself has no acceleration normal to its velocity which can account for

the radiation. It is in fact possible to regard the radiation as generated by the electron, by expressing

the field in terms of the electron charge, its velocity and its acceleration, at a suitable retarded time

ðt � nr=cÞ, but it is simpler to regard the electron as exciting the dielectric medium as it progresses,

and then to consider the dielectric as the source of the radiation (Figure 18.6). The dielectric becomes

polarized, the electron attracting positive charge and repelling negative, so that as the electron passes

each part of the dielectric acts like a small dipole giving only one impulsive oscillation. The radiation

from all impulses along the track adds in phase where the Huygens’ wavelets coincide. For an

electron moving below the critical speed, Cerenkov radiation is understandably absent because

successive wavelets (each of negligible amplitude) do not overlap and reinforce one another.

Shock front
velocity

Velocity u Velocity u
Cerenkov angle

(b)

= cos–l c/(nu)q = sin–l s/u
a

(a)

s

Figure 18.6 Comparison of shock wave in air with Cerenkov radiation from an electron. (a) Shock wave from a
bullet, forming a cone with semi-angle y. (b) Cerenkov wave from an electron in a medium with refractive index
n. Huygens’ wavelets form the wavefront
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What is the angle a between the Cerenkov ray and the electron track? Consider a single wavelength

component of the impulsive radiation from a point in the medium. The track is now a one-

dimensional array of radiators, phased progressively as

fðxÞ ¼ 2p
l

nvx

c
ð18:13Þ

where v is the velocity of the electron. By analogy with the diffraction grating (Chapter 11) we know

that this radiates a cone at angle a ¼ cos�1ðc=nvÞ, provided that n=c is the phase velocity of the wave.

There is a small paradox to resolve here, since the Huygens’ wavelets of Figure 18.6 obviously travel

at the group velocity, leaving us uncertain about the true value of a. The solution is simply that a true

impulse only continues without change of form if the medium is non-dispersive. The correct value for

a when the medium is dispersive is obtained by using the group velocity in the range of wavelengths

which is being observed instead of the phase velocity c=n.

The high-energy particles of a cosmic ray shower generate in the Earth’s atmosphere a flash of

Cerenkov light, which shines within a few degrees of the direction of the shower axis. Light generated by

high-energy particles as they pass through liquids or gases can be used as a sensitive detector for cosmic

ray showers, or for particles from accelerators. When the Cerenkov angle a can be measured it gives a

direct and simple measurement of the velocity of high-energy particles.

18.6 The Formation of Spectral Lines

Spectral lines1 are formed in transitions between quantized energy states of atoms and molecules. The

quantized states in atoms are primarily electronic; the transitions are between discrete energy states of

an electron orbiting in the electric field of the nucleus. In molecules there are also vibrational states;

for simple diatomic molecules these are oscillations in atomic separation. Molecules also have

rotational states: these and the vibrational states become numerous and complex in multi-atomic

molecules. Electronic transitions involve typical energy steps of order 1 eV, giving a spectral line in

the visible domain; vibrational transitions typically have lower energies, of order 0.1 eV, giving lines

in the infrared, and rotational transitions typically involve energies of 0.01 eV or less, corresponding

to the far-infrared and radio regimes. Figure 18.7 illustrates these regimes for a diatomic molecule,

giving a rough guide to the spectral regions in which they mostly apply.

The theory of atomic and molecular spectra is complex, and we consider here only the simplest

atomic spectra, starting with the spectrum of the hydrogen atom.

18.6.1 The Bohr Model

Although the quantum nature of energy levels in all atoms demands a full quantum-mechanical

analysis, which is described later, a useful description due to Bohr2 uses the classical concept of an

1The term spectral line derives from the use of slit spectrographs, in which features appear as bright or dark

lines (emission or absorption) crossing a continuous spectrum.
2Niels Bohr, 1885–1962, creator of the Institute of Theoretical Physics in Copenhagen, and exponent of

complementarity between classical and quantum theories. His model was published in 1913, following a visit to

Rutherford in Manchester in 1912.
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electron orbiting a nucleus, with simple rules which confine the orbits to defined quantized energy

states. The following rules were introduced by Bohr:

� Electrons can only occupy orbits in which their orbital angular momentum is an integral multiple

of the quantity h=2p.

� The transition of an electron between orbits with energy separation �E is due to either the

emission or the absorption of a photon with energy hn ¼ �E.

In Bohr’s model of the hydrogen atom an electron with mass m and charge �e is in orbit at radius r

round the nucleus (charge þe) with angular velocity3 o. Then the quantization of angular momentum

states that

mor2 ¼ nh

2p
ðn ¼ 1; 2; 3; . . .Þ ð18:14Þ

where n is known as the principal quantum number. The balance between electrostatic force and the

centrifugal force for the orbiting electron is

e2

4pE0r2
¼ mo2r: ð18:15Þ

3This is not the angular velocity of an electromagnetic wave: contrary to classical theory, the orbiting electron

does not generate radiation.
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Figure 18.7 Quantum transitions in a diatomic molecule. The lowest photon energies are in transitions
between rotational states and between vibrational states; the highest are due to electronic transitions in
electron orbits, either in outer or inner orbits
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Eliminating o between these equations gives the radii of the quantized orbits

r ¼ aHn2 ð18:16Þ

where

aH ¼ E0h2

pme2
: ð18:17Þ

The radius aH of the smallest orbit is 5:3� 10�2nm.

The total energy ðEÞ of the electron (the sum of the potential and kinetic energies) is

E ¼ � e2

8pE0r
ð18:18Þ

or

E ¼ �Rhc

n2
ð18:19Þ

where the constant Rhc ¼ me4=8E20h
2 is known as the Rydberg constant. This is the binding energy of

the electron in the lowest energy state (the ground state), which is 13.6 eV.

The photon energy hn for a transition between orbits n1 and n2 is

hn ¼ Rhc
1

n2
1

� 1

n2
2

� �
: ð18:20Þ

There is a series of transitions for each value of n1, which occur in different parts of the spectrum,

named as follows:

� n1 ¼ 1 n2 ¼ 2; 3; 4; . . . Lyman series (ultraviolet)

� n1 ¼ 2 n2 ¼ 3; 4; 5; . . . Balmer series (visible and ultraviolet)

� n1 ¼ 3 n2 ¼ 4; 5; 6; . . . Paschen series (infrared)

� n1 ¼ 4 n2 ¼ 5; 6; 7; . . . Brackett series (infrared).

The energy levels for the hydrogen atom are shown in Figure 18.8, with these transitions. Figure 18.9

shows the Balmer series.

The spectra of the alkali metals lithium, sodium, etc., follow a similar pattern, with series of lines

labelled successively sharp, principal, diffuse and fundamental.

18.6.2 Nuclear Mass

The simple Bohr model can be extended to provide some insight into the influence of nuclear mass on

energy levels in hydrogen and other atoms. Equation (18.15) assumes an infinite nuclear mass; to take

account of the revolution of both electron and nucleus, with mass M, about a common centre of mass,

the electron mass m should be replaced in all formulae of the preceding subsection by a reduced mass

m given by

m ¼ mM

m þ M
: ð18:21Þ
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This fractional change is different for deuterium, which has twice the nuclear mass. The difference,

known as an isotope shift, can be seen as a doubling of lines in the spectrum of a gaseous mixture of

hydrogen and deuterium, which allows a precise analysis of the proportions in the mixture.

(In deuterium the fractional shift in photon energies or wavelengths between ordinary hydrogen

and deuterium is 1/3700, which requires more resolving power than a simple prism spectrograph.)

18.6.3 Quantum Mechanics

The wave mechanics theory of atomic structure which was introduced by Schrödinger, and matrix

mechanics introduced by Heisenberg, both in the 1920s, are now subsumed into quantum mechanics.

We outline Schrödinger’s wave theory to demonstrate its relationship to the Bohr particle theory; the

duality between the two approaches has a close similarity to the duality between photons and

electromagnetic waves.

In quantum-mechanical theory the distribution of a single electron within an atomic system is

described in terms of a wavefunction �, whose distribution in space is determined by a potential field

Vðx; y; zÞ; in the simple hydrogen atom this is the potential energy field

VðrÞ ¼ � e2

4pE0r
: ð18:22Þ
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Figure 18.8 Energy levels and transitions in the hydrogen atom, showing the Lyman, Balmer and Paschen
series. (a) The quantized energy levels have energies En ¼ �13:6n�2eV. (b) The orbital radii in the Bohr model:
r ¼ na2o, with ao¼ 0.0529 nm. The wavelengths for the Balmer series are shown.
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Figure 18.9 The Balmer series of spectral lines in the emission spectrum of atomic hydrogen (wavelength in Å)
(G. Herzberg, Atomic Spectra and Atomic Structure, Dove, Publications, 1944)
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The magnitude of j�j2 at any point is the probability density of finding an electron at that point. The

general solution of the Schrödinger wave equation represents a state of uncertain energy, where

measurements of the energy will reveal only a statistical distribution. But there are special solutions

called stationary states, or energy eigenstates, each of which possesses a unique, well-defined energy

E. For a single particle (e.g. an electron in a hydrogen atom), the wavefunction reduces to a product

�ðr; tÞ ¼ cðrÞ expð�2piEt=hÞ. It turns out that the Bohr orbits correspond, roughly, to these energy

eigenstates; transitions between these states occur in the emission or absorption of a photon. The

evaluation of the spatial part of the wavefunction cðrÞ, and hence the probability of finding an

electron with energy E at any distance from the nucleus in the hydrogen atom, is found by evaluating

the time-independent Schrödinger equation

r2cþ 8p2m
h2

ðE � VÞc ¼ 0: ð18:23Þ

This famous equation is closely related to the equations for electromagnetic radiation confined to a

waveguide or resonator, and for any field Vðx; y; zÞ a series of resonant modes appear in its solution.

For the potential field of the hydrogen nucleus (equation (18.22)) these correspond to Bohr’s

quantized orbits. With increasing difficulty but remarkable success the Schrödinger equation can

be applied to more complex atoms, providing the required energy levels and also the probabilities of

transitions between them.

18.6.4 Angular Momentum and Electron Spin

When observed with sufficiently high resolving power, the hydrogen spectral lines are seen to consist

of several closely spaced components; for example, the hydrogen line at 656 nm wavelength is split

into two components separated by about 0.016 nm. This is the fine structure, which was discovered in

many spectra by Michelson; it demands the use of a high-resolution spectrometer (Chapter 12). The

explanation was given by Pauli, who famously proposed that an electron has an intrinsic angular

momentum in addition to its orbital angular momentum. The combination of this spin with the orbital

angular momentum obeys quantum rules, which become complex in multi-electron atoms.

In terms of the Bohr model, the energy split due to electron spin may be thought of as an

interaction between the magnetic moment of the electron spin and the magnetic field at the electron

generated by orbital motion of the proton relative to it.4 A further manifestation of electron spin is a

split of a quantized level into two states in which the spins of the electron and the nucleus are aligned

or opposed; this gives rise to hyperfine structure which is observable in narrow optical spectral lines.

In hydrogen this hyperfine splitting of levels is also observable as a direct transition between the split

levels; this low-energy transition has a very low probability, but it is observed by radio astronomers as

a radio spectral line at 21 cm wavelength (1420MHz) in low-density clouds of interstellar hydrogen.

18.7 Light from the Sun and Stars

To a first approximation, the visible radiation from stars has a blackbody spectrum at the temp-

erature of the surface. This temperature ranges from over 40 000K for the youngest and most

4P.A. Tipler, Modern Physics, Worth 1969, sections 7–5.
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massive stars, designated type O, to below 2000K for the coolest M type5 Blackbody curves for

temperatures of 45000 K, 5800K and 4350K, shown in Figure 18.10, correspond respectively to

white, blue and red stars of types O, G and K. These spectra fit the observed stellar spectra well at

long wavelengths, but at wavelengths shorter than 100 nm there is a deficit due to absorption at the

wavelength of molecular resonances. The atmospheric absorption in the ultraviolet is due to

ozone; outside the atmosphere the absorption is mainly due to the hydrogen Lyman series of

spectral lines.

The spectrum of light from the Sun, which is type G, is shown in Figure 18.11 together with a

blackbody curve for a temperature of 5900K, chosen to give a reasonable fit to the actual spectrum.

The departure from pure blackbody radiation is mainly due to the chromosphere, a gaseous layer

whose thickness is only about 1% of the solar radius. In the lower part of this layer the temperature

is lower than at the surface (the photosphere), and the ionized atoms absorb the continuum

radiation, giving rise to the Fraunhofer lines in the solar spectrum. The absorption in the

chromosphere differs between the centre of the solar disc and its edge, so that the best fit blackbody

curve varies across the disc. Blackbody temperatures of around 5800K to 5900K are often quoted

for the centre of the solar disc.

The chromosphere, which is normally observed through its absorption of photospheric light, can

be observed as an emitter immediately outside the edge of the solar disc when the bright

photosphere is obscured in a solar eclipse. In this brief moment, the line of light at the edge of the

disc may be analysed in a spectrograph, and the spectral lines of several elements then appear in

emission.

18.8 Thermal Sources

The commonest example of a thermal source is the incandescent tungsten filament lamp. The

spectrum corresponds nearly to a blackbody at the emitter temperature of about 2800K, and the

efficiency of converting electrical heating power into visible light is about 9%, corresponding

photometrically (see Appendix 2) to 15 lumens per watt. To prevent oxidation and burn-out, the

filament is enclosed in a glass bulb filled with an inert gas. To reduce the input power required to

maintain the filament at a given temperature the inside may be coated to transmit visible light and

reflect infrared light.

The tungsten–halogen lamp has a tungsten filament with the bulb filled with iodine or bromine

halogen vapour. Tungsten (chemical symbol W) evaporated from the heated filament reacts with

the halogen to form WI6 or WBr6
6 which dissociates in collision with the filament, depositing

tungsten, so prolonging the life of the filament. Expressed in photometric units as the luminous

output per watt of electrical power consumed, the tungsten–halogen lamps can produce up to 40

lumens per watt.

5The sequence of stellar types is O,B,A,F,G,K,M. This was originally an alphabetical sequence based on the

line structure of spectra, but is now ordered in a temperature sequence.
6These compounds are examples of halides in which a halogen (such as iodine or bromine) combines with

another element or group in the Periodic Table.
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Figure 18.10 Blackbody spectra fitted to the spectra of stars with three different temperatures (spectral types
(a) O, (b) G and (c) K). The short-wavelength regions of these spectra show the effects of absorption, mainly by
hydrogen, in the stellar atmosphere and interstellar space. (Courtesy T. O’Brien; spectra from A.J. Pickles,
Publication of the Astronomical Society of the Pacific, 110, 1998, 863)
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18.9 Fluorescent Lights

Fluorescent lights are discharge lamps in which the direct emission is absorbed in a phosphor and

converted into new wavelengths. An example is the mercury discharge lamp which produces

ultraviolet light with a strong line at 253.7 nm. By coating the inner wall of the discharge tube

with a phosphor visible light is produced. Typical phosphors are calcium phosphate, zinc silicate or

calcium tungstate. Discharge lamps may be excited by a radio frequency discharge using external

electrodes. Arc lamps are short-length discharge lamps and operated at high current; typical gases are

xenon, mercury or sodium. The high-pressure mercury lamp operates at pressures up to 10 bar and

emits high-irradiance visible light. By the addition of various halides to the mercury vapour the

colour distribution can be altered to produce increased white light content. A lamp based on emission

from a dimer species of sulphur can closely replicate the solar spectrum. Metal–halide lamps give a

light output of up to 100 lumens per watt.

Mercury discharge lamps may be designed to emit mainly the ultraviolet 253.7 nm line; these find

widespread use in lithography and as germicidal lamps for killing bacteria. Line emission from

discharge lamps provides standard wavelengths for instrumental calibration.

18.10 Luminescence Sources

Luminescence is the emission of light from materials that have been excited in some way other than

by heating. (It is distinguished from incandescence where heating generates thermal radiation.) The

excitation may be by light (photoluminescence), electric field (electroluminescence), electron beam

(cathodoluminescence), chemical reaction (chemiluminescence), sound waves (sonoluminescence)

and in biological matter (bioluminescence).

Figure 18.11 Solar spectral irradiance at the Earth’s surface. (From M. Chaline et. al. 1983), Manual of Remote
Sensing, 2nd edn. page 165. Ed. R.N. Colwell, Am. Soc. of Photogrammetry.
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In photoluminescence light is absorbed and is followed by re-emission at a wavelength which may

be equal to the exciting wavelength, or at a longer wavelength, when it is known as Stokes radiation.

There is also a low probability of the emitted photon gaining energy by absorbing the energy of a

molecular vibration or a phonon, so that the emission is at a shorter anti-Stokes wavelength.

In cathodoluminescence a cathode ray tube produces a visual image on a phosphor coated on a

faceplate by excitation with an electron beam. Colour images can be generated based on Eu:Y2O2S

(producing red light), Ag:ZnS–CdS (green) and Ag:ZnS (blue) phosphors. Chemiluminescence

may be produced in certain exothermic chemical reactions, when molecules in excited states are

produced. An efficient chemiluminescence reaction is based on peroxy-oxalate, producing

sufficient light to be used in light sticks. Chemical reactions in biological materials produce

bioluminescence. Biological organisms such as bacteria, insects or fungi are able to act as light

emitters. The transmission of high-intensity ultrasound in liquids containing dissolved gases

produces sonoluminescence. In the presence of ultrasound minute inhomogeneities in the liquid

grow into microscopic bubbles; these undergo rapid oscillation, expand and, finally, collapse. In

this process a large amount of energy can be taken up by the bubbles, which is then released as

light during the bubble collapse.

The absorption and emission properties of photoluminescent materials depend on the electronic

structure of the material. The probability of emission is quantified by the ratio Z of the number ne of

photons emitted to the number absorbed na. It is termed the quantum efficiency, and it is always less

than 1.

The excitation energy may be dissipated by non-radiative processes such as lattice phonon

vibrations in a solid, reducing the value of h. Photoluminescent materials are based on doped

inorganics, organic molecules or semiconductors. Inorganic crystals and glasses doped with transition

metals or rare earth ions are termed phosphors. Typical energy levels in an inorganic phosphor are

shown in Figure 18.12.

X-ray imaging in medicine detects X-rays by using a phosphor screen from which ultraviolet or

visible light is emitted and recorded on a photographic film. These phosphors are based on rare earth

dopants such as indium, europium or terbium.

Luminescence from organic molecules has wide-ranging applications which include biological

probes, medical diagnostics and environmental analysis; it is also used in a type of laser known as

photon

Ec

Ed

Ea

Ev

21

Conduction band

Valence band

Figure 18.12 Energy levels and light emission process from a phosphor. Ev and Ec are the limits of the valence
and conduction bands. Acceptor and donor dopant levels are Ea and Ed. Excitation of the phosphor (1) can lead
to light emission (2)

18.10 Luminescence Sources 431



the dye laser. Organic molecules made up of alternating single (C–C) and double (C����C) carbon

bonds have a set of outer-lying electrons in molecular orbitals with angular momentum l ¼ 1,

designated p electrons. These electrons determine the absorption and emission properties of the

molecules. The electrons fill the molecular orbitals in pairs, following the Pauli exclusion principle

in which the state function is antisymmetric with respect to exchange of particles, and two

electrons in a given orbital must have opposing spins. With paired spins the ground state is a singlet

state with no net spin, the total spin S being zero. Excited electronic states may be singlet or triplet

(S ¼ 1). Electronic absorption of energy promotes one electron to a higher singlet or triplet state;

singlet–singlet transitions are allowed while singlet–triplet transitions are forbidden.

For each electronic energy level there are a set of vibrational levels; the population in these levels

follows the Boltzmann distribution. As shown in Figure 18.13, energy may redistribute within the

molecule by vibrational relaxation (characteristic time � 10�12s), internal conversion (by higher

singlet to S1 and higher triplet to T1 transitions) and intersystem crossing (singlet–triplet transition).

The emission may be by fluorescence on the S1 � S0 transition (decay time � 10�8s) or by

phosphorescence on the partially forbidden T1 � S0 transition (decay time � 10�3s). (Fluorescence

ceases rapidly as the excitation ceases, while phosphorescence can persist for a considerable time.)

Fluorescence can be excited by ionizing radiation in inorganic and organic materials; this

mechanism is termed scintillation. (This is not to be confused with the effects, such as the twinkling

of starlight, observed in the passage of light through a distorting medium, and also called

scintillation.) Detectors to measure fluorescence scintillation quantitatively are called scintillation

counters. In these detectors a scintillator medium is used to absorb the energy of the ionizing particle,

such as X-rays or gamma rays, and the fluorescent light emission is detected by a photomultiplier,

photographic film or a CCD. Suitable scintillation materials include inorganic crystals such as sodium

or caesium iodide, organic crystals or liquids, doped plastics or a gas.

18.11 Electroluminescence

Inorganic phosphors may be excited by an electric current by placing the phosphor layer between

electrodes. The emitting materials are doped with wide-bandgap semiconductors from groups II–VI,

Phosphorescence
Fluorescence

IC

IC T2

T1

S2
Energy

S1

S0

IS

Figure 18.13 Energy levels of an organic molecule with singlet (S0, S1, S2) and triplet (T1, T2) electronic states
and vibrational levels, internal conversion (IC), intersystem crossing (IS), fluorescence and phosphorescence
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IIa–VIb and IIb–VIb, or with organic polymers. When placed in an electric field electron carriers are

able to excite the activators. The ability to excite electroluminescence by an electric current is a major

convenience and opens up applications in emergency lighting and backlighting for LCDs. Fabrication

in thin films enables miniaturization and integration in flat-panel displays.

Electroluminescent sources based on doped ZnS, SrS or CaS powders with transparent dielectric

binder and sandwiched between two electrodes provide emission wavelengths in the blue, green and

red regions suitable for visible displays. The LED is an electroluminescence source using single

crystal semiconductors, organic molecules or polymers. The injection of minority carriers into a

forward-biassed p–n junction is followed by recombination of electron and hole carriers and light

emission, as described in Chapter 17. LEDs are able to produce wavelengths across the visible region

and with relatively high efficiency. LEDs based on GaP for green emission and the four-element

semiconductor AlInGaP emitting in the red are able to produce up to 100 lumens per watt. Violet

(370–420 nm), blue (460–490 nm) and green (500–520 nm) emitting LEDs using the nitride GaInN

are able to emit 30 lmW�1. LEDs are suitable sources for illumination, instrumentation indicators,

fibre optic communications, large-area and full-colour displays, road signs, traffic signals and vehicle

lighting. LEDs can be more than 10 times as efficient as conventional light bulbs;7 the replacement of

lamps in traffic lights with LEDs gives a substantial saving in power consumption.

Solid state organic molecules and organic polymers have energy level characteristics similar to

semiconductors. The energy differences between the molecular S0 and S1 levels (Figure 18.13) in

the solid state form molecular orbital states, termed LUMO (Lowest Unoccupied Molecular

Orbital) and HOMO (Highest Occupied Molecular Orbital) similar to the semiconductor bandgap

(Figure 18.14). They are able to be doped to provide electron or hole semiconductivity. In organic

layers the electrons and holes are mobile and form an excitation, termed an exciton, when they

collide. Organic electroluminescent light sources are based on small molecules (OLEDs) or

polymers (PLEDs). The organic LED is made up of hole transport and electron transport layers

sandwiched between electrodes which inject carriers. They offer convenient fabrication together

with high efficiency and fast response.

HOMO

Energy

Photon

Electron injected

Hole injected

LUMO

Figure 18.14 Molecular energy band structure which shows the highest occupied molecular orbital (HOMO),
the lowest unoccupied molecular orbital (LUMO) and dopant levels. An electron–hole singlet spin configuration
is illustrated with radiative emission

7Radiant efficiency is the ratio of the power emitted in the visible range, to the total input power.
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Problem 18.1
(a) Find the linewidth in wavelength and frequency terms for a cooled neon (atomic mass number M ¼ 20)

discharge at 300K. (b) Find the half-width of the Ha line (l ¼ 656 nm) emitted by atomic hydrogen in an

ionized interstellar cloud at a temperature of 104 K assuming that the width is entirely due to the thermal

Doppler effect.

Problem 18.2
The tungsten filament of a 100W light bulb operates at a temperature of 2800K. Assume that it radiates as a

blackbody, and ignore that fraction of the power lost in the form of heat energy. (a) Determine the number of

photons emitted per second. Note that for a blackbody at temperature T , the mean photon energy is 2:70kT . (b)

Use E ¼ mc2 to determine the total mass emitted by the bulb during its life of 750 h. Compare this with the mass

of an E. coli bacterium, 6� 10�13 kg.

Problem 18.3
A 5mW helium–neon laser radiates l ¼ 633 nm with a linewidth �n ¼ 104 Hz. The beam diameter is 0.4mm.

(a) How many photons will the laser emit per second? (b) What temperature would be required for a blackbody

to emit as many photons over the same frequency range and from the same area?

Problem 18.4
A synchrotron has 20 equally spaced bunches of electrons of 3GeV energy held in circular orbits by a 2 T

magnetic field. The total circulating current is 50mA. Determine the radius and period of the orbits. Calculate the

total power radiated and the characteristic energy of the emitted photons. (The total power radiated by an

accelerated non-relativistic electron is given by equation (18.2).)

Problem 18.5
The Bohr model can be applied to all atoms which, like ordinary hydrogen, contain a single electron, such as

deuterium, singly ionized helium and doubly ionized lithium. It predicts that the wavelength emitted or absorbed

in a transition between levels n1 and n2 is given by 1=l ¼ Rð1=n21 � 1=n22ÞZ2, where Z is the atomic number. For

an infinitely massive nucleus, the Rydberg constant is

R1 ¼ mee
4=8E20h3c ¼ 1:097 373 157 . . .� 10�2 nm�1: ð18:24Þ

For nuclei of finite mass, R is found by replacing the electron rest mass with the reduced mass m.

(a) For any given transition, find the fractional wavelength �l=l difference between 3He and 4He.

(b) What transition in 4He yields a wavelength closest to that of the Ha line of the Balmer series

(n1 ¼ 2; n2 ¼ 3; l ¼ 656:3 nm), and what is the fractional wavelength difference between them?

Problem 18.6
Bohr’s correspondence principle claims that when applied to larger and larger microsystems, quantum-

mechanical predictions must tend towards those of classical, macroscopic physics. This suggests, in particular,

that for large n values, the electron orbits in Bohr’s model of the hydrogen atom should behave increasingly as in

the classical theory. Classical electrodynamics predicts that a charge orbiting in a circle with angular frequency o
will emit radiation of frequency f ¼ o=2p. Consider the frequency n of the photon emitted in Bohr’s model for

the quantum jump n þ 1 ! n. Show that in the limit n ¼ 1; n ¼ f . (You can assume a hydrogen atom with

infinitely massive nucleus for simplicity.)
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19 Interaction of Light with Matter

Why make so much of fragmentary blue= In here or there a bird, or butterfly= Or flower, or weaving-stone, or

open eye,= When heaven presents in sheets the solid hue?

Robert Frost.

Although the interaction of light with matter must ultimately be considered in terms of photons and

quantum mechanics, there are many circumstances when a classical electromagnetic theory provides

a practically complete description. The most interesting phenomena, however, involve resonances

within an atom or molecule; only quantum mechanics can account for the existence of these

resonances, but given their existence it turns out to be convenient and illuminating to consider

scattering, absorption and reradiation of light by individual charges and atoms through a classical

electromagnetic approach. As in radiation theory (Chapter 18), however, there comes a point when

interactions with matter are necessarily considered as photon processes; these interactions, such as

Compton and Raman scattering, are considered in the later sections of this chapter. Some simple

scattering processes, such as Rayleigh and Compton scattering, are concerned with isolated particles

behaving independently of one another. The radiation scattered from many particles then adds with

random phase, so that it is the power and not the amplitude which is proportional to the number of

radiating or scattering events. In dense materials it is no longer appropriate to consider individual

particles, and we consider instead the polarization of a dielectric and its effect on an electromagnetic

wave. A concise guide to the various scattering processes is given in a table at the end of this

chapter.

19.1 The Classical Resonator

In a neutral gas it is often appropriate to treat the neutral atoms or molecules as classical harmonic

oscillators, as in Section 18.1. We derive the response of such oscillators to the electric field of the

electromagnetic wave, and calculate the reradiated, or scattered, radiation from an individual

oscillator. The scattered radiation is at the same frequency, but in directions away from the direction

of the incident wave. Following the classical analysis, the atom or molecule is represented as a simple

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



harmonic oscillator in which a mass m with charge q responds to an applied field E0 expðiotÞ with a

complexified displacement x given by

m
d2x

dt2
þ x

dx

dt
þ o2

0x ¼ qE0 expðiotÞ ð19:1Þ

where x is the damping constant and o0 is the undamped resonant frequency. (The inverse of x is the

lifetime t ¼ 1=x.) The response1 is an oscillation at angular frequency o with displacement

xðtÞ ¼ x0 expðiotÞ:

xðtÞ ¼ qE0

m

expðiotÞ
ðo2

0 � o2Þ þ iox

¼ qE0

m

expðot þ fÞ
½ðo2

0 � o2Þ2 þ ðxoÞ2�1=2
ð19:2Þ

where E0 is the incident field. The phase difference f is of no consequence, as the scattered fields

from many atoms add in random phase. Figure 19.1 shows the amplitude of response for a wide range

of driving frequency o and for three values of the damping constant x. Note particularly:

� The full width at half power (FWHP) of the resonance is approximately x (for small x).

� At low frequencies (i.e. low photon energies) the terms in o4 and ðxoÞ2 can be neglected in

comparison with o4
0. The result is that the amplitude of oscillation is independent of the wave

frequency.

� For large damping the maximum amplitude is at a lower frequency than o0.

The radiated electric field from the electron is proportional to its acceleration, found by twice

differentiating equation (19.2) with respect to time.

1If the damping constant is small enough ðx � o0Þ, there is also a transient oscillation with frequency

o0 ¼ ðo2
0 � x2=4Þ1=2, which dies away exponentially according to the factor expð�xt=2Þ:
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Figure 19.1 The amplitude of response of a simple harmonic oscillator for various degrees of damping
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19.2 Rayleigh Scattering

At low frequencies compared with the resonant frequency, the acceleration is simply proportional to

o2, and the reradiated power is therefore proportional to o4, or to l�4. This is the Rayleigh law of

scattering. Note that there is no change of frequency in Rayleigh scattering. Its most familiar

application is to the scattering of visible sunlight by air molecules in the Earth’s upper atmosphere,

where blue light is scattered more than the longer wavelength red light.2 Light received directly from

the Sun is unpolarized, but scattered sunlight is plane polarized. This may readily be demonstrated by

using polaroid sunglasses; the plane of polarization is at right angles to the direction of the Sun, since

the induced vibration of the air molecules is transverse to the illuminating rays (Figure 19.2).

Rayleigh scattering only applies when the scattered radiation from individual particles adds

incoherently, which is not the case for the lower atmosphere; at sea level the molecules are spaced

by only about 3 nm, and the atmosphere behaves as a dense medium.

The Rayleigh law can also apply to the scattering of light in transparent solids or liquids, where the

scattering elements are irregularities in density or structure rather than individual atoms. An

important example is in the transmission of light along glass fibres, as used in long-distance

communications (Chapter 6). Here the lowest achievable attenuation is mainly limited by Rayleigh

scattering by small, widely spaced irregularities in the glass. The Rayleigh law dictates the use of the

longest infrared wavelengths for which light sources and detectors are available, but avoiding the

hydroxyl ion resonance at 1:39 mm; in practice the lowest attenuation is obtained at about 1:55 mm.

Rayleigh scattering applies to small particles, with diameter D less than about 0:1 l. Scattering
from larger particles, with diameters of around one wavelength and above, is more complex since

there can be interference between waves separately scattered from different parts of the particle.

2See E. J. McCartney, Optics of the Atmosphere, John Wiley & Sons, 1976.

A
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Unpolarized direct rays90°
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scattered ray
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Sun

Figure 19.2 Polarization of scattered light. Light reaching the observer directly from the Sun is unpolarized.
But light scattered off air molecules at A and observed from any direction perpendicular to the incident sunlight
is seen to be polarized. (Notice that the Sun is so far distant, compared with the size of the Earth or Sun, that the
rays from the Sun are nearly parallel, though perspective makes it appear that they converge)
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There will then be a non-isotropic scattering pattern, which depends on shape as well as material and

size. Scattering by spherical conducting particles of any size was analysed by G. Mie and is known as

Mie scattering; the theory is applicable also to non-conducting particles.

19.3 Polarization and Refractive Index in Dielectrics

When the scattering particles are close together, as in a solid, they can no longer be considered as

individuals. Instead we consider the effect of a continuous dielectric on an electromagnetic wave in

terms of the electric polarization induced by the electric field of the wave. The polarization represents

a charge separation within the material, forming a dipole moment which oscillates at the wave

frequency: this reradiates a secondary wave, which combines with the original wave. The combina-

tion may have a different phase from that of the original wave: this means that the phase velocity of

the resultant wave has been determined by the polarization properties of the dielectric; that is, by its

dielectric constant.

The velocity of electromagnetic waves is given generally by c=ðErmrÞ
1=2

, where c is the velocity in

free space (Chapter 5). For a pure dielectric, whose magnetic susceptibility is unity, the refractive

index therefore equals E1=2r , the square root of the dielectric constant. The relation between Er and the

polarization P is given by simple electrostatic theory as

D ¼ ErE0E; or P ¼ E0ðEr � 1ÞE ¼ E0weE; ð19:3Þ

where we is the electric susceptibility. The polarization P is defined as the electric dipole moment per

unit volume. If there are N atoms or molecules per unit volume, each polarized by the field E to form

a dipole with moment p ¼ aE, where a is their individual polarizability, then

Er ¼ 1þ aN
E0

¼ 1þ P

E0E
: ð19:4Þ

We must allow for the possibility that the atomic polarization is not in phase with the field E, which

may happen when the atom behaves like a resonant atomic oscillator. The refractive index E1=2r is

therefore complex, having real and imaginary parts. If we denote it by n� ik, the effect is that the

wave becomes

E ¼ E0 expfi½ot � ðn� ikÞkx�g ð19:5Þ

in which k is the wave number in free space. The imaginary part k then represents absorption, since

equation (19.5) becomes

E ¼ E0 expð�kkxÞ exp½iðot � nkxÞ�: ð19:6Þ

k is called the extinction coefficient. The wave proceeds at phase velocity c=n, while the amplitude

decays exponentially with distance.

Equation (19.4) becomes

ðn� ikÞ2 ¼ n2 � k2 � i 2nk ¼ 1þ aN
E0

ð19:7Þ
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and if k is small enough, as in a transparent gas or any dielectric where the attenuation is small,

n2 ’ 1þ aN
E0

: ð19:8Þ

A further approximation may be made if n is close to unity:

n ’ 1þ aN
2E0

: ð19:9Þ

We now have the required relationships between the refractive index of a medium and the response of

its charged particles to the oscillatory electric field. The response, represented by the polarizability a,
will be found for three particularly interesting cases in the following sections.

19.4 Free Electrons

A particularly simple situation arises when the dielectric polarization is entirely due to electrons

which are not bound to nuclei. This is the case for radio wave propagation through an ionized gas

such as the terrestrial ionosphere, and also for X-rays in metals, where the electrons are only lightly

bound compared with the photon energy at these short wavelengths. Neglecting the effect of

collisions between electrons and ions in the ionosphere, and the effects of lattice irregularities in

metals, the polarizability a for a single electron is found from the simple equation of motion

d2x

dt2
¼ eE

m
¼ eE0

m
expðiotÞ: ð19:10Þ

The electrons all follow a (complexified) oscillatory displacement x ¼ x0 expðiotÞ, and the polariz-

ability a is the dipole moment per unit field:

a ¼ ex

E
¼ � e2

mo2
: ð19:11Þ

Substituting in equation (19.8) we find

n2 ¼ 1� Ne2

E0mo2
: ð19:12Þ

This gives the refractive index for any dielectric where the polarization is due to free electrons. It may

be written as

n2 ¼ 1�
n2p
n2

; np ¼
1

2p
Ne2

E0m

� �1=2

ð19:13Þ

where np, known in gases as the plasma frequency, is characteristic of the medium. For the terrestrial

ionosphere np is at radio frequencies, reaching 10MHz where the electron density is greatest (i.e. in the

F-region), while for metals it lies in the ultraviolet. For frequencies above np the refractive index is real
and less than unity, and the phase velocity is therefore greater than the free space velocity c. It is easy

to show that if equation (19.13) holds, then the product of the group velocity and phase velocity is c2.
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19.5 Faraday Rotation in a Plasma

In the Faraday effect (Section 7.11) the plane of polarization of an electromagnetic wave propagating

parallel to a magnetic field B in a material medium will rotate, due to the different phase velocities of

the two hands of circular polarization. The angle of rotation c is given by c ¼ BVl, where V is the

Verdet constant and l is the path length. In this section we add a magnetic field to the analysis of the

previous section, and find the Verdet constant for an ionized gas with a magnetic field.

Consider a plane wave incident parallel to a magnetic field Bẑ, in a plasma of electrons with charge

q ¼ �e and mass m. For non-relativistic particle speeds, only the electric component of the light

wave is significant, and we can write the Lorentz force on an electron moving with velocity v as

ma ¼ qEþ qv� B, or in component form

m
d2x

dt2
¼ qEx þ q

dy

dt
B; m

d2y

dt2
¼ qEy � q

dx

dt
B; m

d2z

dt2
¼ 0: ð19:14Þ

Defining a complex position ~r ¼ xþ iy and complex electric field ~E ¼ Ex þ iEy we obtain from the x

and y equations

d2~r

dt2
þ iqB

m

d~r

dt
� q~E

m
¼ 0: ð19:15Þ

A circularly polarized monochromatic wave in the direction of the z axis is represented by
~E ¼ E0 exp½�iðot � kzÞ�; the upper sign refers to left-hand polarization (LHP) and the lower to

RHP. The motion of the electron is represented by ~r ¼ r0 exp½�iðot � kzÞ�.
Following the analysis of Section 19.4 above, the amplitude of motion becomes

r0 ¼
�qE0

mðo2 � oqB=mÞ : ð19:16Þ

For an electron, q ¼ �e, this leads to a displacement of the electron r ¼ ðeE=mÞðo2 � oocycÞ�1
,

where ocyc ¼ eB=m ¼ 2pnL is the cyclotron angular frequency in the plasma (see Section 18.3). The

polarization P of the plasma is P ¼ �Ner, where N is the number density of electrons in the plasma.

As before, we find n2 ¼ Er ¼ 1þ P=E0E, giving the two-valued refractive index

n2 ¼ 1� ðNe2=mE0Þðo2 � oocycÞ�1
. Notice that this generalizes the plasma equation (19.12) simply

by relacing o2 by ðo2 � oocycÞ. It is normally the case that ocyc � o so we can set the average of n2

to n20 ¼ 1� ðNe2Þ=ðmE0o2Þ 	 1 for a thin plasma. Notice also that nL < nR, so that the phase

velocity of the LHP wave is greater than that of the RHP wave.

A plane polarized wave may be regarded as the sum of two circularly polarized waves of opposite

hands; the plane of polarization is the direction in which the oppositely rotating electric vectors

intermittently coincide. After travelling a distance l in the plasma, a phase difference �f ¼ kl�n

develops between the two polarizations, and the vector field of the LHP wave has rotated by �f
ahead of the RHP wave. Their vector superposition has then rotated 1

2
�f, i.e. half this amount, so that

the plane of polarization has rotated by c ¼ 1
2
kl�n. Since for a thin plasma�n ¼ 1

2
�ðnÞ2, we find the

rotation formula

c ¼ e3BNl2l
8p2E0m2c3

¼ ð2:63� 10�13 radÞðB=TÞNl2l; ð19:17Þ
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where T ¼ 1 T. (Note that 1 T ¼ 1Wbm�2 ¼ 1 kg s�2 A�1 ¼ 1Nm�1 A�1.)

Faraday rotation is particularly significant in radio wave propagation through the terrestrial

ionosphere and interstellar space (see Problem 19.5).

19.6 Resonant Atoms in Gases

The third case for which we can easily evaluate the polarizability, and hence obtain the refractive

index, concerns neutral atoms in gases. In a low-pressure gas the atoms may be assumed to act

independently. Electrons are bound within the atoms at a series of energy levels; the atoms emit and

absorb light with photon energies equal to energy differences between the energy levels. The classical

analogy is a simpler picture, in which the atoms are considered as oscillators which resonate at the

appropriate spectral line frequencies. These resonators respond to the electric field of a wave with a

forced oscillation, whose amplitude depends on the resonant angular frequency o0, and the sharpness

of resonance, characterized by a width (FWHM) �o1=2 ¼ x0. The approach of equations (19.2),

(19.10), and (19.11) then leads (for a low-density gas) to a polarizability

a ¼ e2

m

1

ðo2
0 � o2Þ þ io�o1=2

: ð19:18Þ

Some awkward algebra is needed to relate a through equation (19.18) to the refractive index n� ik,
but if k and n� 1 are both small, as is appropriate for a low-pressure gas, and using equation (19.5) a

good approximation may be found:

n ¼ 1þ Ne2

2E0m
o2

0 � o2

ðo2
0 � o2Þ2 þ ðo�o1=2Þ2

ð19:19Þ

k ¼ Ne2

2E0m
o�o1=2

ðo2
0 � o2Þ2 þ ðo�o1=2Þ2

: ð19:20Þ

The form of the variation of n and k with the wave frequency is shown in Figure 19.3. Well away

from resonance, the refractive index n increases steadily with frequency, and the extinction is small.

Refractive
index n

–10 –5 0 5 10

Absorption k

Frequency

Figure 19.3 The variation of absorption and refractive index n (plotted as n� 1) in the region of a resonance.
The width of the resonance is determined by the lifetime t
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Normal dispersion is said to apply for any frequency where dn=do > 0. As the wave frequency

approaches the atomic resonance, and the amplitude of the atomic oscillators increases, the

absorption increases and the dispersion dn=do in the refractive index changes sign. This anomalous

dispersion, defined by dn=do < 0, is found at every resonant frequency of the atoms in the gas.

Anomalous dispersion is most marked in gases at low pressure, since it is only when the atoms behave

independently that a sharp resonance is found. When resonators of the same frequency are coupled

together the combined resonance curve is broadened; in quantum terms this means that the lifetime of

an excited state is reduced, while in terms of refractive index there are less marked effects of

anomalous dispersion.

In real gases the atoms will have many resonances, each of which has an associated anomalous

dispersion. As compared with monatomic gases, molecular gases also have rotational and vibrational

resonances, occurring generally at lower frequencies. A complete curve showing refractive index and

absorption for a gas therefore shows a series of the dispersion curves with the form of Figure 19.3.

Away from resonances, and where the absorption is negligible, the refractive index increases with

wave frequency; this is seen in glass, where the refractive index is higher at the violet than at the red

end of the spectrum. When the wave frequency is very much higher than the resonant frequencies, the

refractive index becomes less than unity; this is the free electron case discussed in the previous section.

A formula by W. Sellmeier provides a useful representation of refractive index as a function of

wavelength:

n2ðlÞ ¼ Aþ
X
j

Bjl
2

l2 � l2j
: ð19:21Þ

Here each lj represents a resonance, at frequency nj, with ljnj ¼ c. (Obviously the Sellmeier formula

is inapplicable close to a resonance.)

The wave propagates with phase velocity c=n, and with an amplitude decreasing exponentially with

distance. This attenuation is expressed by an absorption coefficient m, such that the fraction of the

intensity lost in a thin slab with thickness dx is mdx. An expansion of equation (19.6) shows that

m ¼ 2ok
c

: ð19:22Þ

The absorption may be regarded as the sum of the absorptions by all the individual atoms. Let each

atom have an effective cross-sectional area s for absorption or scattering. When a beam of area A

travels a small distance �x in a medium with N atoms per unit volume, it will pass NA�x atoms and

suffer a fractional loss of irradiance m�x ¼ ��I=I ¼ ðNA�xÞs=A. Hence the cross-section for

absorption s ¼ m=N.

19.7 The Refractive Index of Dense Gases, Liquids and Solids

In gases at high pressure and in liquids and solids, the polarization induced in neighbouring atoms or

molecules means that the effective local polarizing field, say Eloc, on each atom or molecule differs

from the applied external field E. A model for the local field taking into account the polarization of

the neighbouring atoms gives

Eloc ¼ E þ P=3E0: ð19:23Þ
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For a dense medium P ¼ NaðE þ P=3E0Þ, and rearranging

P ¼ NaE=ð1� Na=3E0Þ: ð19:24Þ

With the definitions P ¼ E0weE ¼ E0ðEr � 1ÞE, we obtain

Na=3E0 ¼ ðEr � 1Þ=ðEr þ 2Þ: ð19:25Þ

This is the Clausius–Mossotti equation relating the relative permittivity to the polarizability of the

molecules. We may use the relation between the relative permittivity and the real part of the refractive

index, i.e. Er ¼ n2, to obtain the related Lorentz–Lorenz equation

ðn2 � 1Þ=ðn2 þ 2Þ ¼ Na=3E0: ð19:26Þ

For cases in which the refractive index is near unity this equation reduces to equation (19.9). Equation

(19.26) is found to be valid over a wide range of values of n and N.

19.8 Anisotropic Refraction

In most substances the refractive index is independent of the direction of propagation and

independent of the polarization of the light. From the foregoing discussion this is obviously due to

isotropy in structure of the substance: the polarizability is independent of the direction of the electric

field. For some materials, however, this may not be so. In a crystal the unit cell may be anisotropic, so

that the polarizability depends on the direction of the electric field in relation to the directions of the

crystal axes. This leads to the birefringence already discussed in Chapter 7. Again, a liquid may be

composed of molecules with a permanent dipole moment, so that they may be aligned by an external

steady electric field. In this way a dielectric liquid may be made birefringent, and used to modify the

polarization of light passing through it. Birefringence induced by an electric field in a normally

isotropic liquid is known as the Kerr effect (Section 7.11): a similar effect induced by a magnetic field

is known as the Cotton–Mouton effect. Another related phenomenon in which the existing

birefringence of a crystal is modified by an electric field is known as the Pockels effect.

These effects relate to the refractive indices of plane polarized components of a light ray. The

two components will also show anomalous dispersion for frequencies close to atomic resonances.

Figure 19.4 shows a further effect in which the resonant frequency of an atomic oscillator is changed

n n

λ 

Figure 19.4 Anisotropic dispersion. Strong magnetic or electric fields can induce birefringence in some
substances by changing the resonant frequency of atomic oscillators. The oscillators then become anisotropic,
with resonances in the dispersion curve appearing at frequencies which differ for two planes of polarization,
related to the orientation of the applied field. The dielectric then shows magnetic or electric double refraction at
frequencies close to the resonance
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by a strong electric or magnetic field. The resonance then appears in the dispersion curve at different

frequencies for the two planes of polarization, depending on the plane of polarization in relation to

the direction of the applied external field. The result is a large birefringence in the region of the

resonance. This is the Voigt effect.

Optical activity, discussed in Chapter 7, is due to a difference in refractive index between the two

hands of circular polarization.

19.9 Brillouin Scattering

In condensed matter (liquid or solid), light waves may be scattered by non-uniformities in dielectric

constant created by acoustic waves. This is Brillouin scattering, which is often used in measurements

of the elastic properties of materials; here phonons (which are quantized acoustic waves and intrinsic

to the material) cause the light scattering. Figure 19.5 shows scattering by a plane acoustic wave,

wavelength ls and travelling at velocity vs. The wave causes variations in density, and hence of

refractive index, in planes separated by ls. The reflected electromagnetic waves of wavelength l1 are
only in phase and observable when the glancing angle of incidence y for mth-order scattering satisfies

the Bragg law (derived for X-rays in Chapter 11):

2ls sin y ¼ ml1: ð19:27Þ

The reflecting planes are moving at velocity vs, causing a Doppler shift, which in Figure 19.5 changes

the frequency from n1 to a lower frequency n2 given by

n1 � n2
n1

¼ 2
vs sin y

c
: ð19:28Þ

The shift in frequency is small, and does not appreciably affect the Bragg reflection condition. It is,

however, sufficiently large to allow the sound velocity to be measured. Combining equations (19.27)

and (19.28),

n1 � n2 ¼ n1
2vs
c

ml1
2ls

¼ mns; ð19:29Þ

where we have used nsls ¼ vs and n1l1 ¼ c, showing that the frequency shift can only be at integer

multiples of the acoustic wave frequency. The sign of the frequency shift depends on the direction of

Velocity vs   
Acoustic wave

Wavelength λs 

Incident
light wave

Reflected
light wave

ω2, λ2ω1,λ1

θ θ

Figure 19.5 Brillouin scattering by an acoustic wave
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the acoustic wave. Brillouin shifts have typical values in the range of 0.1 to 100GHz, and may be

observed with a laser probe source and a Fabry-Perot interferometer.

19.10 Raman Scattering

The scattering of light by atoms and molecules can be described by the Rayleigh law only for light

with low photon energy. When the photon energy is comparable with or greater than the resonance

energies in the scatterers, there may be a quantum interchange of energy, so that a photon emerges

from a collision with a different energy.

The response of the damped driven classical oscillator, as in equation (19.2), is maximum at

resonance, when o ¼ o0 and the photon energy is close to a resonant energy. The scattering which

follows from this response corresponds to the re-emission of photons with unchanged energy. This is

not always the case: the atom or molecule may absorb a photon and subsequently decay to a different

excited state by emitting a photon of different energy; this inelastic scattering is known as Raman

scattering.

Two types of Raman scattering may be distinguished. Normally the emergent photon has a lower

energy than the incident photon: this is the usual inelastic scattering. If, in contrast, the scatterer is

already in an excited state before the interaction, a photon may be emitted with higher energy than the

incident photon: this is referred to as superelastic scattering. Analysis of both types must provide both

for conservation of energy and for conservation of momentum, as for Compton scattering of free

electrons.

In the quantum theory of Raman scattering from a molecule an incident photon interacts with

quantized vibrational or rotational energy levels of the molecule. The photon raises the molecule to an

excited electronic state, which is not an eigenstate of the system but may be an intermediate or virtual

excited state. This state rapidly decays producing a scattered photon and the molecule in a different

vibrational level. Where the final vibrational level is of higher energy the scattered photon has lost

energy and has a longer wavelength than the incident photon; this leads to the Stokes Raman

spectrum. Alternatively the photon may gain energy by interacting with a molecule in a higher

vibrational level than the ground level, and will then have a shorter wavelength. This is the anti-

Stokes Raman spectrum; it has lower amplitude than the Stokes spectrum, since it is partly

determined by the population of molecules in the higher vibrational level given by the Boltzmann

factor expð��E=kTÞ, where �E is the energy of the higher vibrational level. When the incident

photon energy is close to an energy eigenstate of the molecule, i.e. an absorptive transition, this

corresponds to a resonance, and in this resonance Raman scattering the strength of the scattering is

greatly enhanced.

Insight into the Raman effect can be gained by a classical (non-quantum-mechanical) theory. A

molecule in an electric field is distorted from the zero-field case with the electrons and nuclei moving in

opposite directions; this creates an induced electric dipole moment or polarization in the molecule. For

a molecule with polarizability a in an applied electric field E, the induced electric dipole moment is

p ¼ aE: ð19:30Þ

The electric field from a light wave oscillating at frequency o, E ¼ E0 sinðotÞ, induces an oscillatory

dipole moment

p ¼ aE0 sinðotÞ: ð19:31Þ
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The normal modes of vibration of the molecule modulate the polarizability, such that for a molecular

vibration at frequency ov the polarizability a becomes

a ¼ a0 þ b sinðovtÞ: ð19:32Þ

The polarizability at equilibrium is a0 and b is a constant. Then

p ¼ ½a0 þ b sinðovtÞ�E0 sinðotÞ: ð19:33Þ

Expanding the sine product we obtain

p ¼ a0E0 sinðotÞ þ ð1=2Þ bE0½cosðo� ovÞt � cosðoþ ovÞt�: ð19:34Þ

The oscillating dipole has components at frequency o leading to Rayleigh scattering, at ðo� ovÞ
giving the Stokes Raman spectrum, and at ðoþ ovÞ giving the anti-Stokes spectrum.

This classical analysis indicates a selection rule for Raman scattering: for the molecular vibration

(or rotation) to be Raman active it must cause a change in the molecular polarizability.

The Raman effect gives only a weak scattered irradiance, but a laser is an ideal light source,

providing monochromatic and focusable light with high irradiance. In the Raman scattering

experimental arrangement the scattered light is dispersed in frequency by a monochromator, which

is most usually two monochromators in series, to discriminate against strong Rayleigh scattering at

the incident frequency and stray light. Suitable high-sensitivity detection is provided by the

photomultiplier or CCD detectors.

19.11 Thomson and Compton Scattering by Electrons

In Section 19.4 we considered the collective effect of free electrons on the propagation of an

electromagnetic wave, by analysing the polarization of an electron gas. If the electrons instead act

independently, as they will in a dilute gas where their spacing is large compared with the wavelength,

they scatter electromagnetic radiation in a simple classical process, analogous to Rayleigh scattering

by neutral atoms. This is known as Thomson scattering, for which the individual electrons have the

Thomson cross-section

sT ¼ 8pr20
3

¼ 6:652� 10�29 m2 ð19:35Þ

where r0 is the classical electron radius.3 In Thomson scattering the radiation is not absorbed, but

reappears as radiation travelling in a different direction. There is no change of frequency; in quantum

terms the photons collide elastically with the electrons. This applies when the photon energy hn is

much less than the rest mass energy of the electron m0c
2.

Thomson scattering is a valuable technique in the characterization of plasmas produced in the

laboratory. A probe beam of irradiance I0 is attenuated in passage through a plasma according to

I ¼ I0 expð�NsTzÞ, where N is the electron density and z is the distance travelled in the plasma. A

3That is, r0 ¼ e2=ð4pE0mec
2Þ ¼ 2:818� 10�15 m is the approximate radius of the electron viewed as a charged

sphere, in order for its mass to derive entirely from its Coulomb self-energy.
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splendid natural display of the scattering of light by free electrons is in the solar corona, where sunlight

is scattered by electrons in the outer atmosphere of the Sun, and observable during a solar eclipse.

For higher photon energies the scattering can only be regarded as a quantum process in which a

collision between an electron and a photon involves an exchange of both energy and momentum. This

is the realm of Compton scattering (see Section 5.6), in which the photon emerging after the collision

has a lower energy, i.e. a longer wavelength, the amount of the change depending on the geometry of

the collision. The analysis which depends on the conservation both of energy and of momentum gives

the Compton scattering formula for the increase in wavelength �l as a function of y, the angle

through which the photon is deviated:

�l ¼ h

mec
ð1� cos yÞ: ð19:36Þ

Compton scattering is observed in X-rays passing through a solid or a gas. The essential interaction is

between a high-energy photon and an individual electron, whether or not that electron is bound to an

atomic nucleus.

19.12 A Summary of Scattering Processes

Problem 19.1
Consider the complex refractive index of a gas for the case where the atomic oscillators are lightly damped:

x ¼ �o1=2 � o0. Equations (19.15)–(19.16) can be written conveniently in the form

nðoÞ ¼ 1� Aðo2 � o2
0Þ=f ðoÞ; kðoÞ ¼ Aox=f ðoÞ;

Scattering type Initial system Final system Description

Compton Photonþ charge q Photonþ charge q Photon, esp. X-ray or gamma ray, acts

like particle in colliding with free

charge hn 
 mec
2, �l > 0

Thomson EM waveþ charge q EM waveþ charge q Dipole radiation from oscillating free

charge, especially an electron

hn � mec
2, �l ¼ 0

Low-frequency limit of Compton

Rayleigh EM waveþ atom,

molecule, particle

or density fluctuation

EM waveþ atom,

molecule, particle

Dipole radiation from oscillating, bound

electrons D=l � 0:1, �l ¼ 0

Mie EM waveþ spherical

particle

EM waveþ spherical

particle

D=l arbitrary. Reduces to Rayleigh for

D=l � 0:1. Forward scattering

accentuated for D=l 
 0:1
Raman Photonþmolecule

or material

Photonþmolecule

or material

Increase or decrease in energy of photon

due to change in vibrational or rotational

energy of molecule

�l > 0 ‘‘Stokes’’

�l < 0 ‘‘anti-Stokes’’

Brillouin EM waveþ phonon EM waveþ phonon Acoustic waves in solid or liquid �l > 0

or �l < 0

(19.37)
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where we define f ðoÞ ¼ ðo2 � o2
0Þ

2 þ ðoxÞ2, A ¼ Ne2=2E0m. (Note: the gas density is assumed to be low

enough that A=o0x � 1.)

(a) Show that to first order in the small quantity x=o0, the frequencies where nðoÞ has its local minimum and

maximum are o2
� ¼ o2

0 � o0x. Find the extremal values nðo�Þ.

(b) Working to second order in x=o0, show that kðoÞ has its maximum at the frequency

ok ¼ ðo2
0 � x2=4Þ1=2 	 o0. Find the peak value kðokÞ.

(c) Show that the extrema of nðoÞ satisfy kðo�Þ ¼ kðokÞ=2. What does this give for the width (FWHM) of the

‘‘extinction index’’ kðoÞ?

Problem 19.2
X-rays of wavelength 0:712� 1010 m undergo Compton scattering in carbon. Calculate the wavelength of the

radiation scattered at p=2 if the scattering particle is (a) a free electron, (b) the whole carbon atom.

Problem 19.3
An isotopically pure sample of hydrogen chloride gas, when illuminated by light at 488 nm from an argon ion

laser, shows a Raman-scattered line at 565 nm. Calculate the vibrational frequency of the molecules.

Problem 19.4
Explain why (a) all polished bulk metals have strong reflectance in the visible region and appear shiny, (b) gold

has a reddish appearance, (c) white light appears blue–green after passing through a thin film of gold.

Problem 19.5
Find the Faraday rotation for a linearly polarized radio wave, wavelength 1m, travelling for 500 light-years

through the ionized gas of interstellar space in which the electron density is 104 m�3 and the magnetic field

component along the line of sight is 10�10 T.
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20 The Detection of Light

Get Thee glass eyes;/ And, like a scurvy politician, seem to see the things thou dost not.

William Shakespeare, King Lear.

The range of photon energies, from the negligibly small quanta of long radio waves to the

overwhelmingly large quanta of cosmic gamma rays, is reflected in the wide variety of methods of

detecting radiation. At the extremes, there is no obvious connection between the measurement of the

oscillating electric field of a radio wave and the measurement of the momentum interchange in a

collision between a gamma ray photon and a material particle. All methods lead to a measurement of

the flow of energy in radiation, and when we consider the ultimate sensitivity of any measurement we

specify it in terms of the smallest quantity of radiant energy that can be detected. At short

wavelengths this smallest quantity is the energy in a single photon; at long wavelengths the

sensitivity is limited by thermal effects in the detector and individual photons cannot be detected.

Light occupies a middle position in the electromagnetic spectrum, where most detectors are

photonic. In this chapter we concentrate on photonic detectors and include only a brief section on

thermal detectors. The photonic detector may involve photoemission, in which an electron is excited

and detected outside the photoemitting surface, or where a photon excites an electron from the

valence band to the conduction band of a semiconductor, so creating an electron–hole pair. Mobile

electrons and holes within a semiconductor may be detected by applying an external voltage, as in

photoconduction, or as a current in the internal electric field of a semiconductor photodiode.

20.1 Photoemissive Detectors

In all photoemissive detectors an incident photon frees an electron from a solid by ionization. If the

electron has sufficient energy it may escape from a photoemissive surface; this is the photoelectric

effect. The photoemitting material may be a metal or a semiconductor. The minimum photon energy

for photoemission depends on the material; it is called the work function W. If the photon has

sufficient energy the electron may leave the surface with kinetic energy E given by

E ¼ hn�W : ð20:1Þ

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd



The minimum frequency n for photoemission corresponds to a maximum photon wavelength l0 given
by

l0 ¼
hc

W
¼ 1:24� 103

W
nm; ð20:2Þ

where W is in electron–volts.

Each photoemissive material has its own work function; for example, for gold W ¼ 4:5 eV, so that

only photons of light with a wavelength shorter than 275 nm can release electrons from it. W is

smaller for the alkali metals; for caesium W ¼ 2:1 eV, giving a limiting wavelength of 590 nm, while

for a widely used alloy of alkali metals, Na2KCsSb (the S20 cathode), the wavelength limit is 850 nm.

Even if an electron is given enough energy to overcome the work function, it may be trapped in the

bulk of the photoemissive material. The proportion of emitted electrons to incident photons is

the quantum efficiency Z. Typically only about 10% of the photons manage to eject an electron from

the surface, corresponding to Z ¼ 0:1.
Figure 20.1(a) shows the wavelength dependence of quantum efficiency for a typical S20

photocathode, with Z ¼ 0:2. Figure 20.1(b) shows the responsivity R, which takes into account the

wavelength dependence of the photon energy; it is defined as the ratio of the photoelectric current A

(amps) to the input signal power I (watts). Semiconductors such as gallium arsenide (GaAs) or

caesium oxide (Cs2O) are widely used as photoemitters; they have a lower surface reflectance than

metals, and they can provide quantum efficiencies of up to 30%.

In a simple photoelectric detector (Figure 20.2) the electrons from the emitting surface (the

photocathode) in a vacuum tube may be collected by an electrode (the anode); the current is then

proportional to the rate of incidence of photons. At low light levels it is possible to detect the arrival

of individual photons by amplification in a photomultiplier tube (Figure 20.3). Here the electrons

emitted from the photocathode are accelerated to a second metal surface, or dynode, which emits

several electrons each time a primary electron strikes it. An accelerating potential of typically 1 to
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Figure 20.1 (a) The quantum efficiency Z and (b) the responsivity R of a typical photoemitter, showing the fall
in performance at lower quantum energies. The dotted line shows the performance expected with a quantum
efficiency Z � 0:2, independent of wavelength. The broken line indicates the effect of absorption at higher
quantum energies
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2 kV is required between the anode and the photocathode. A series of these dynode secondary

emitting stages can be used, usually from 6 to 14, eventually multiplying the charge by a factor of

105 to 108. The photocathode may be held at negative potential so that the signal is extracted from the

anode at ground potential, but for lowest noise in photon-counting mode the photocathode may be

operated at ground potential. Photomultipliers may be used either to determine an average light

irradiance (intensity) by recording the direct current, or to detect pulses of light, including low light

levels corresponding to individually detected photons. Photomultipliers are available which detect in

the short ultraviolet near 100 nm, and others through the visible range to the near infrared at 1500 nm

using a GaAs photocathode.

The usefulness of all photoelectric detectors at low light levels depends both on the proportion of

photons which produce a detectable output, and on any random output, or noise, generated inside the

detector. (We consider in Section 20.5 below how to quantify the overall performance of a detector at

Anode Photocathode

Figure 20.2 Photoelectric tube. An electron emitted by the photocathode is collected by the anode

Photocathode Dynodes

1 3 5 7 9 11

A

108642

PC

Photon

PC D D D D D

Dynode potential resistor chain

D D D D D D

A
Output

Anode

Load
resistor

Figure 20.3 Photomultiplier tube. An electron emitted by the photocathode PC is accelerated to D1, the first of
a series of dynodes. At each dynode each electron stimulates the emission of several secondary electrons, and a
large pulse of current is collected by the anode A. The potentials of the dynodes are set by the resistance chain,
and the output voltage pulse is developed across the load resistor
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low light levels.) In the photomultiplier most of the noise is generated by the random emission of

electrons from the first photoemissive surface due to thermal excitation; there is, however, an added

noise from the dynodes, mainly from the first. The background current from thermal emission is

known as the dark current. The added noise from the photocathode depends on the temperature and

the work function. The noise current may be reduced by cooling the photocathode, typically to

�20�C; a semiconductor junction working by the Peltier effect is used for this purpose. At room

temperature the thermal energy of electrons is of order 1/40 eV, so that for a metal such as gold with a

high work function this random background is negligible. Photomultipliers for high photon energies

may therefore be made to be practically noise free.

A single primary photon falling on the photocathode produces an output pulse of appreciable

length; this may be important since it limits the photon-counting rate which can be achieved without

overlapping pulses. The output pulse length from a photomultiplier is determined mainly by the

spread in travel time of electrons between the dynodes, which typically restricts the time resolution to

about 10 ns. A time resolution of less than 1 ns is achieved in photomultipliers which are specially

designed for a high counting rate.

Photomultipliers are widely used for their high sensitivity and time resolution, which they achieve

in operation at room temperature.

20.2 Semiconductor Detectors

As we saw in Chapter 17, electrons in a semiconductor can become mobile if given sufficient energy.

In a photonic detector, the energy to free the electron is derived from an incident photon. Given

sufficient energy, the electron freed by a photon may escape the solid entirely, in the process of

photoemission. Given a lower energy (but greater than the energy gap), the electron may be

transferred from the valence band to the conduction band, creating an electron–hole pair. Semi-

conductor detectors may detect individual photons, or a number of mobile electrons within the crystal

lattice may be created and sensed as an increase in the conductivity.

We recall from Chapter 17 that the electron energies within the crystal lattice of a pure

semiconductor are almost all constrained to lie within the valence band, where they occupy almost

all available energy levels. Above this band of energies is the bandgap, and above this gap again is the

conduction band. The excitation of an electron into the conduction band leaves a hole in the valence

band. If an external electric field is applied, the electron and the hole move in opposite directions, the

electron moving faster than the hole. This is the action of a photoconductor, in which the rate of

arrival of photons with sufficient energy is measured by an increase in conductivity.

The responsivity of a photoconductive detector is the output current divided by the input photon

power. Figure 20.4 shows how the quantum efficiency Z and the responsivity R vary with wavelength,

showing the departure from the behaviour of an ideal detector. Ideally Z is unity and R rises linearly

up to the cut-off wavelength. In practice the photon absorption falls off at shorter wavelengths, while

the cut-off is broadened by thermal excitation.

Most photoconductors use extrinsic semiconductor material, in which electrons are excited from an

impurity energy level into the conduction band. In intrinsic materials the excitation is from the

valence band; the energy gap is greater, so that intrinsic materials are appropriate for higher photon

energies. Figure 20.5(a) shows the spectral response of silicon, an intrinsic semiconductor. The

response of cadmium sulphide (CdS) is close to that of the human eye, so that it is particularly

suitable for use in exposure meters for cameras, while that of the alloy HgCdTe can be adjusted to

give a peak between 1 and 30 mm depending on the ratio of HgTe to CdTe in the alloy. Figure 20.5(b)
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shows the response, extending well into the infrared spectrum, of three doped germanium extrinsic

semiconductors. All such semiconductors with small bandgaps must be cooled to avoid excessive

thermal excitation.

The current in the detector circuit of a photoconductor may be much larger than that caused by a

single electron–hole pair for each absorbed photon, due to the process of photoconductive gain.When

a detected photon creates an electron–hole pair, the electron moves under the action of the applied

field to the positive terminal, and the hole to the negative terminal. The electron moves faster than the

hole, since the electron mobility is greater than the hole mobility (by a factor of 200 in GaAs, for

example). The electron reaches the positive terminal and is absorbed before the hole reaches the

negative terminal. In order to keep charge neutrality this triggers the release of another electron from

the external circuit. This electron then begins to transit the detector. This process can continue until

the hole disappears, either by recombination with an electron, or on reaching the negative terminal
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Figure 20.4 Ideal (solid line) and practical (broken line) photoconductor detector responses: (a) quantum
efficiency Z; (b) responsivity R
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Figure 20.5 The spectral response of typical photoconductive detectors: (a) intrinsic, (b) extrinsic
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where it recombines. The effective recombination time may then be the time it takes the hole to reach

the negative terminal. Thus many electron transits can be made before recombination takes place.

Then, photoconductive gain G¼ (mean time before loss of hole by recombination)/(time for electron

to drift across detector), which is the ratio of the transit times for the slow and fast carriers.

Photoconductive gain does not, of course, affect the quantum efficiency, which is the proportion of

photons which are absorbed and produce mobile electron–hole pairs.

20.3 Semiconductor Junction Photodiodes

In the depletion layer of a junction photodiode (Section 17.2) an electric field is already present

within the semiconductor. Absorption of a photon in the depletion layer generates an electron–hole

pair which is separated by the internal electric field, creating a change in current and potential across

the photodiode.

Figure 20.6 shows the current–voltage relation for a p–n photodiode, with and without incident

light. The diode is usually operated with a reverse bias voltage; the current due to the generation of

electrons and holes in the depletion region is shown as IP in Figure 20.6. The reverse bias increases

the field in the depletion region, which has two advantages: it increases the width of the depletion

region, which improves photon detection, and it shortens the transit time for electrons and holes. The

output is in the form of a voltage developed across a load resistance RL, following the load line shown

in Figure 20.7(a).

A photodiode can also be used in the photoconductive mode as a source of current, as in the short-

circuit mode of Figure 20.7(b). Operation at open circuit, as in Figure 20.7(c), produces the voltage

VP; this is known as the photovoltaic mode. A solar cell is required to deliver power into a load

resistor RL, as in Figure 20.7(d). The highest power is produced for the maximum product IV . A solar

cell can convert about 15% of incident radiation into electrical power.

The efficiency of a photodiode may be improved by including a layer of undoped, or intrinsic,

material between the n- and p-type layers. Such a p–i–n diode has a larger effective depletion layer,

giving it a higher quantum efficiency. A silicon p–i–n diode may have a quantum efficiency

approaching unity at its maximum spectral response in the region of 0.8 mm. The p–i–n diode also

has a rapid response time (some tens of picoseconds) because of the larger depletion region, which

has a reduced capacitance. The response of silicon diodes, however, does not extend beyond about
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Figure 20.6 Current–voltage relation for a p–n junction showing the change with incident light. The
photodiode current at reversed bias is IP, and the open circuit voltage is VP
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1.3 mm. Diodes with a response in the important wavelength range 1.3–1.6 mm, in which fibre optic

communication systems operate (Chapter 6), are often heterojunctions, using different materials on

either side of the junction. An example is the InGaAsP/InP diode, which has a quantum efficiency

approaching 0.75 over this infrared communication band.

The electric field across the depletion layer may be increased by operating a junction diode with a

large reverse bias, typically �300V. The electrons and holes created by photons may then acquire

sufficient energy to ionize more atoms, generating more electron–hole pairs which are in turn

accelerated and may create further ionization. A diode designed to operate in the voltage region

immediately below this ‘avalanche’ level is known as an avalanche photodiode, or APD. The current

amplification in an APD may be greater than 100; the response time is not much affected by the

avalanche process and may be less than 1 ns. APDs are widely used in optical communications.

The p–n boundary is usually between layers of the two materials in a thin slab or wafer; for

example, a thin layer of n-type dopant may be deposited on a substrate of p-type material, and

diffused into it in sufficient quantity to form the junction. A thin metal film, forming a transparent

electrode, is then deposited on the surface.

Metal–semiconductor photodiodes, also known as Schottky diodes, are formed by depositing a thin

transparent metallic film (usually gold) on a doped semiconductor, usually n-type. The structure and

the energy bands are shown in Figure 20.8. When a metal with work function W is in contact with an

n-type semiconductor, equilibrium is attained by charge transfer occurring until the Fermi levels

attain the same value. The electrostatic potential of the semiconductor is raised in relation to the metal

and a depletion layer forms in the semiconductor near the junction. Photons with energy E > Eg go

through the metal film and are absorbed in the depletion layer of the semiconductor, creating

electron–hole pairs. Schottky diodes have some advantages over p–n diodes: the depletion layer is

close to the surface, which minimizes the loss of photons before they reach the active region of the

diode, and they may also have a shorter response time, of order 10�11 s, giving bandwidths in the

region of 100GHz. The metal film can be sufficiently thin to transmit blue and near-ultraviolet light,

giving the diode short-wavelength sensitivity.
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Figure 20.7 A p–n junction diode used (a) with reverse bias and load resistance RL, (b) short circuit, (c) open
circuit, (d) with a low or high load resistance RL, as in a solar cell
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20.4 Imaging Detectors

Photoelectric detectors have been described so far as single event detectors. There are a number of

ways in which a two-dimensional array of detectors may be assembled so that an image may be

recorded, as in an electronic digital camera. An array of photodiodes on a silicon chip can be used as

a very efficient detector of an image, with sufficient pixels (picture elements) for use in a camera. It

would be quite impractical to make a separate wired connection to each diode, so the outputs are

scanned sequentially after exposure to light. An arrangement which is widely used is the charge-

coupled device (CCD).

Three principles are involved in the CCD: photodetection, charge storage and charge transfer. The

photodetectors may be photodiodes or a photo-metal–oxide–semiconductor (MOS) capacitor struc-

ture. In Figure 20.9(a) an MOS photodetector is shown as an electrode insulated from a semiconduct-

ing silicon substrate by a thin film of metal oxide. The substrate is usually p-type, and the electrodes

are biassed positively. Under each electrode the positive carriers (holes) are repelled, leaving a

depletion layer at a positive potential. Light transmitted to the metal electrode and oxide layer

generates an electron–hole pair in the p-type silicon, and the pair separates under the electrostatic

field. The electrons move towards the metal electrode but are unable to penetrate the oxide layer and

are trapped in the depletion layer, which acts as a potential well. The amount of charge accumulated

is proportional to the integrated light flux. Photoelectrons accumulating in this potential well are

stored with very little loss for periods up to some hours, allowing long integration times for faint-light

photography, as for example in astronomy.

To provide readout the accumulated charge is required to be transported to an output by the

technique of charge transfer. An example of the charge transfer process in a line of MOS

photodetectors is shown in Figure 20.9(b) and (c). In this example the charge is accumulated

under every third electrode, where a deeper potential well is created by applying a larger voltage.

Charge can be transferred along a row of electrodes by the successive transfer of this bias voltage, as

shown in Figure 20.9(b). The action is often likened to a ‘bucket brigade’, in which buckets of water

are passed from hand to hand to fill a tank. The last electrode on the line is the input to a transistor
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Figure 20.8 (a) Structure and (b) energy band diagram for a metal–semiconductor photodiode, in which a
metal is deposited on an n-type material. The energy barrier ES, known as the Schottky barrier, determines the
lowest photon energy at which the photodiode will operate
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amplifier. The outputs of the individual rows can similarly be read sequentially. Efficient illumination

of a CCD array requires the surface electrodes to be transparent: they are often made of a metallic

compound such as PtSi, forming a Schottky barrier diode. Alternatively the diode array can be

illuminated from the rear, when the silicon chip must be thinned to allow the photodiode action to

occur close to the potential wells.

Cooled CCD cameras are efficient in infrared light, with low noise, high sensitivity, low dark

current and wide dynamic range. CCDs are extensively used in digital cameras for both visible

and infrared light; they provide an electronically stored image which can be read into a digital

store and subsequently processed in a computer. They are very valuable in astronomy, where they

provide images with several million pixels, operating with a high quantum efficiency (detective

quantum efficiency DQE reaching over 50%; see the definition of DQE in the next section) and

with a linear response. Schottky barrier diodes can be used to extend the wavelength coverage to

about 6 mm. Diodes operating at these long wavelengths must be cooled to reduce thermal

emission.

20.5 Noise in Photodetectors

Ideally the output of a photodetector is simply proportional to the input optical power. In practice,

there may be an output current with no optical input: this is known as a dark current. Both the desired

output and the dark current have a random component, known as noise, which limits the accuracy of

measurements at low light levels. We briefly describe the various sources of noise in photodetectors,

and define the parameters which specify their overall performance when a signal is to be detected in

the presence of noise.

The first source of noise is inherent in the photon nature of light itself. Each detected photon gives a

pulse of output current, and the fluctuations in the photon stream become electrical noise, known as

shot noise. If a photon stream is random, the number of photons m arriving at the detector in a given

time interval varies about the mean rate n according to Poisson statistics, with a probability PðmÞ
given by

PðmÞ ¼ nmexpð�nÞ
m!

: ð20:3Þ

For Poisson statistics the standard deviation, r.m.s. noise N, is the square root of the mean, n, and

since the mean n is also a measure of the signal strength S the signal-to-noise ratio is

S=N ¼ n1=2: ð20:4Þ
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p-Si

Transparent metal
electrode

Figure 20.9 The charge transfer system in a CCD, showing the deeper potential wells under the electrodes
with higher voltages. One of the wells in (a) has accumulated electrons, which are shifted to the adjacent store
in (b). A three-phase cycle of voltages moves the charges progressively along the line, as shown in (c)
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The same argument applies to the photoelectron flux from a detector with quantum efficiency Z; when
the randomness in the photoelectron output is the statistical fluctuation of a photon stream with mean

rate Zn, giving a signal-to-noise ratio

S=N ¼ Z1=2n1=2: ð20:5Þ

The degradation of signal-to-noise ratio in a detector in comparison to that of the input photon stream

is specified as the detective quantum efficiency DQE, defined as

DQE ¼ ðS=NÞ2out
ðS=NÞ2in

: ð20:6Þ

If the degradation is entirely due to the quantum efficiency, then DQE ¼ Z.
In a communication system with a bandwidth B the noise relates to the number of detected photons

arriving in a time interval 1/2B. If the photon flux (number of photons per unit time) is � then

S=N ¼ Z�
2B

� �1=2

: ð20:7Þ

We have noted that detectors sensitive to low-energy photons may have to be cooled to minimize

random thermal excitation of electrons. This is an example of thermal noise, also called Johnson

noise, which arises from the random motion of charge carriers in resistive materials. This may be

evaluated from the simple circuit in Figure 20.10.

From the classical statistical thermodynamics of a system in equilibrium,1 an average random

thermal energy kT=2 is associated with each degree of freedom.2 The energy stored in a capacitor is

CV2=2, so that the noise voltage VN in a single degree of freedom is given by

1

2
ChV2

Ni ¼
1

2
kT : ð20:8Þ

The corresponding kinetic component is the Johnson noise current IJ given by

hI2J i ¼ hV2
NiR�2 ¼ kT

CR2
: ð20:9Þ

C R VN

Figure 20.10 Noise voltage VN in a simple CR circuit

1See for example F. Mandl, Statistical Physics, 2nd edn, 1988.
2It may be necessary at very low temperatures and very high signal frequencies to include the quantum factor

hn=½expðhn=kTÞ � 1�.
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The number of degrees of freedom is the bandwidth�f ¼ ð4CRÞ�1
of the circuit,3 giving the Johnson

noise current

hI2J i ¼
4kT�f

R
: ð20:10Þ

Thermal noise may arise in a photodetector either within the detector itself or in the electronic circuit

which detects the output. Its importance depends on the photon flux: if the photon flux is large, the

photon noise dominates, while at low photon flux the combined detector and circuit noise dominates.

In practice, for any photodetector at low light levels, we want to know the smallest signal that can

be distinguished from noise. This has led to the concept of the noise equivalent power (NEP), which

can be defined as the radiant power (in a sinusoidally modulated signal) that produces a signal-to-

noise ratio of unity at the output of a given optical detector; it is quoted for a given modulation

frequency and noise bandwidth (typically 1Hz).

The inverse of NEP is termed the detectivity4 D, which is a measure of the ability to distinguish a

light signal from the detector noise.

20.6 Image Intensifiers

An image on an extended photoemissive surface may be detected by focussing the emitted electrons

onto a phosphor screen, as in the image intensifier (Figure 20.11). Here the electrons emitted from the

photocathode surface in a vacuum tube are accelerated towards a phosphor screen which is at high

potential. The focussing is achieved by an electromagnet, as shown in the figure, or by electrostatic

field lenses. The brighter image obtained in this way is useful for night vision, especially if the

photocathode has a spectral response extending into the infrared.

3See for example Grant and Phillips, Electromagnetism, 2nd edn, 1990.
4The performance of several types of detectors varies approximately as the square root of their area A, leading

to the definition of specific detectivity

D� ¼ A1=2

NEP
: ð20:11Þ
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Photocathode Phosphor
screen

+ 10 keV

Figure 20.11 An image intensifier using magnetic focussing

20.6 Image Intensifiers 459



In television cameras an image stored on a photosensitive screen is scanned by an electron beam,

providing a sequential electronic signal. In the vidicon camera (Figure 20.12) the material of the

screen is photoconductive, such as lead oxide (PbO). The current from the scanning electron beam is

collected by a transparent conductor, such as stannic oxide, on the front of the screen; the current then

depends on the conductivity of the PbO at the point scanned by the electron beam.

The image orthicon, shown diagrammatically in Figure 20.13, depends on photoemission.

Electrons emitted from the photocathode are accelerated to a thin non-conducting target plate P,

which may consist of glass or magnesium oxide. The potential of P is about 300 volts above that of

the photocathode, so that secondary electrons are emitted on impact; these are collected by a fine

wire mesh at a potential slightly above P. The plate P therefore accumulates a positive charge density

whose distribution represents the image on the photocathode. A beam of electrons now scans P, with

the electron energies so arranged that the beam is scattered back more or less according to the

potential of the part of P close to the beam. At the same time the beam neutralizes the charge on P.

D

D
G

Stannic oxide
Lead monoxide

Output

Figure 20.12 The vidicon. The conductivity of the lead oxide layer is proportional to the number of photons
that fall on it. An electron beam from the gun G, deflected by a voltage applied across the plates D, scans over
the layer, and a current is collected by the transparent conducting layer of stannic oxide

G

S

Target plate P

Electron collector grid

Photocathode

S D

D
EM

EM Output

Figure 20.13 The image orthicon. Photoelectrons from the photocathode are accelerated to the target plate,
where they release a large number of electrons. These are collected by a fine wire grid, leaving an image on the
target plate in the form of a stored positive charge. An electron beam from a gun G is scanned by the deflector
plates D. The number of scattered electrons S depends on the charge on P. The electrons are detected in an
electron multiplier EM surrounding the electron gun
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The scattered electrons are detected in the secondary electron multiplier surrounding the electron

gun.

Another approach to an imaging detector is the microchannel plate, or channel plate multiplier,

shown in Figure 20.14. This is essentially a close-packed array of photomultiplier tubes, each of

which is a thin glass tube coated inside with photoemissive material. The array of tubes, each about

16 mm in diameter, forms an insulating plate about 1mm thick. As in the electronic image intensifier

this microchannel plate is placed between photoemitting and phosphor plates.

The photomultiplier action is illustrated in the figure. A potential difference of around 1 kV

between the surfaces of the plate provides a gradient of potential along each tube, and several stages

of multiplication are effectively achieved. The phosphor plate may of course be replaced by a CCD

or other array detector. The microchannel plate can then be used as a photon-counting imaging

detector.

20.7 Photography

The photographic process has two important advantages over photoelectronic devices. First, it can

store permanently an enormous amount of information. The linear resolution of a photographic plate

is about 1 mm, while plates over 10 cm across are available for use in wide-field cameras, such as the

Schmidt telescope (Chapter 3). Second, it can be used to build up an image during very long exposure

times; this is a process of integration.

A photographic emulsion on a glass plate or embedded in a plastic film contains individual grains

of silver halide crystals, each about 0.5 to 1 micron in diameter. Each crystal can be developed by a

reducing agent to produce a grain of silver. The reducing agent is not, however, powerful enough to

develop grains unless they contain an imperfection in the form of a single silver ion which has already

been converted into a silver atom. This conversion can occur when a photon is absorbed by the

crystal. The photon acts by exciting an electron into the conduction energy band, where the electron is

free to move until it is trapped by a silver atom in the crystal lattice; thereby producing a silver atom.

Groups of silver atoms within the crystal grain form a latent image. The latent image is converted into

a visible image by the process of development, in which a chemical reducing agent is used to reduce

the silver bromide to silver. Grains containing groups of silver atoms are more quickly reduced and

form the visible image.

PhotocathodePhotocathode

Screen Anode

(c)(b)(a)

+1 kV

0

Figure 20.14 Microchannel plate. (a) An electron emitted from the photocathode enters a channel, strikes the
wall and stimulates a shower of secondary electrons. Part of the shower development is shown. A large bunch of
electrons reaches the fluorescent screen. (b) The channels, typically 16 mm across, are mounted in a plate several

centimetres across, between the photocathode and anode (c)
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There is a natural relaxation process in the crystal, and a developable grain is only produced if

more than one photon is absorbed within some minutes of time. Further, red and green light have

insufficient quantum energy for direct action on the crystal, and absorption must be arranged to occur

in organic dyes which coat the grains. Photography is not therefore a process with a high DQE. The

spatial resolution of the emulsion is limited by the size of the grains. More sensitive films have larger

grains, and lower spatial resolution. The resolution is specified in terms of the closeness of a

resolvable pattern of parallel lines: photographic films have a spatial resolution from 200 to 2000

lines per mm.

Unlike most electronic detectors the response of the photographic emulsion can be non-linear at

both low and high light levels. Figure 20.15 shows a typical relation between density on the

developed plate and the logarithm of the light exposure.5 The lower non-linear portion, referred to as

the toe, is due to the requirement for a minimum rate of arrival of photons in an individual grain. The

shoulder is the effect of saturation, where all grains have become developable. Between these is the

straight line region in which the response is more or less linear.

20.8 Thermal Detectors

For the low photon energies of long infrared wavelengths (100 mm to 1mm), and occasionally also at

shorter wavelengths, we may require a measurement of a steady flow of energy through its heating

effect on an absorbing surface. The resultant temperature rise may be detected by a change of

resistance, in a bolometer, or by a change in thermoelectric potential at a junction of two dissimilar

metals, in a thermocouple.

In both types of detector it is essential to use a sensitive element with a small thermal capacity, well

insulated from its surroundings, so that its temperature can respond rapidly to the incident energy.

The response time t is the ratio of thermal capacity C to the rate of heat loss Q:

t ¼ C

Q
: ð20:12Þ
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Figure 20.15 The characteristic curve for the response of a photographic film

5This characteristic curve is known as the Hurter and Driffield, or HD, curve, after its originators.
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A response time of a few milliseconds can be achieved. A rapid response requires a small heat

capacity C; however, for a very small detector thermal fluctuations may be important. The

sensitivity limit may then be set by spontaneous temperature fluctuations with mean value �T

given by

�T ¼ T

ffiffiffiffi
k

C

r
ð20:13Þ

where k is Boltzmann’s constant.

The response of a bolometer element depends on the temperature coefficient a of resistance in the

detector material, defined as

a ¼ 1

r
dr
dT

ð20:14Þ

where r is the resistivity of the material. Most metals at room temperature have a values of around

þ0.005K�1; larger values are available in so-called thermistor semiconductors, usually oxides of

manganese, nickel or cobalt. Here the temperature coefficient depends on the bandgap in the

semiconductor; values of �0.06K�1 are obtained at room temperature. Carbon provides a useful

resistance element at low temperature; infrared astronomy from satellites uses such detectors cooled

by liquid helium.

Thermocouples are generally less sensitive than bolometers, but they are more rugged and

generally more convenient to use. They operate at room temperature, and their wide spectral

response is useful for wideband spectroscopy. A larger and more sensitive detector can be made

by connecting an array of thermocouples in series; this arrangement is known as a thermopile.

Pyroelectric detectors provide a wide and flat spectral sensitivity over the range 1 to 100 mm with a

detectivity comparable with that of a thermopile but with a rapid (subnanosecond) response time.

They are used for infrared sensing in fire detection and security alarm systems. The pyroelectric

detector is made from a ferroelectric crystal which has a permanent electric dipole moment. A change

in the temperature of the crystal alters the overall dipole moment, inducing a charge on electrodes on

the surfaces of the crystal.

Problem 20.1
Someone who is outdoors at midday, but shielded from direct sunlight, may typically receive from the diffuse

light of the sky an irradiance of about 80Wm�2. If the diameter of the pupil is 3mm, and a photon of average

energy has a wavelength of 500 nm, find the rate at which photons are entering each eye.

Problem 20.2
A photomultiplier detecting a weak source has a gain of 107 and a quantum efficiency q ¼ 0:1. What photon rate

will produce a current of 10�9A? How long would it be necessary to integrate to detect a 1% change in the

source?

Problem 20.3
A photomultiplier has a photocathode efficiency of 0.1, a series of 14 dynodes, an electron multiplication gain at

each dynode of 4 and an anode load of resistance of 50 ohms. For a continuous photon arrival rate of 106 photons

per second, estimate the voltage generated at the anode.
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Problem 20.4
Estimate the longest wavelength which an intrinsic photodiode based on GaAs can detect. The bandgap energy of

GaAs at 300K is 1.43 eV.

Problem 20.5
An intrinsic semiconductor used as a photoemitter has an upper wavelength limit of 200 nm; when used as a

photoconductor the upper limit is 1.8mm. Find the width Eg of the bandgap and the width Ec of the conduction band.

Problem 20.6
The forward current in a p–n junction diode with applied bias V and reverse leakage current I0 is

I ¼ I0½expðeV=kTÞ � 1� (see equation (17.5)). In the photovoltaic mode the diode is used in open circuit and

there is no net current; the voltage Vpv generated across the diode is measured. For a photon flux �, show that

Vpv ¼ ðkT=eÞ ln ðZ�le=I0hcÞ.
A photodiode is used in the photovoltaic mode to detect a 1mW light beam at 800 nm and at ambient

temperature. The quantum efficiency of the diode at 800 nm is 0.5 and the reverse bias leakage current is 50mA.
Calculate the photovoltaic output voltage.

Problem 20.7
A p–n photodiode used at a wavelength of 800 nm gives a photocurrent of 1mA for an incident optical power of

2.8 mW. Determine the efficiency and responsivity of the photodiode.

Problem 20.8
The quantum detection mechanism in a photodiode results in shot noise in which there are statistical fluctuations

in the photocurrent about its mean value. For a mean current I and photodiode bandwidth B, the r.m.s. current

variation is ði2s Þ
1=2 ¼ ð2eBIÞ1=2.

A p–i–n photodiode working at 1.3 mm has a quantum efficiency of 0.5 and a dark current of 10 nA. Under

conditions in which the dark current is significantly greater than the photocurrent, determine the noise equivalent

power. Given that the active area of the diode is 100 mm� 150mm, what is the specific detectivity of the diode?

Problem 20.9
Explain the following:

(a) Photomultipliers with extended infrared sensitivity have poor noise characteristics compared with

photomultipliers designed for blue or UV response.

(b) A photodiode used in photovoltaic mode has a non-linear irradiance response and a slow response time.

(c) Thermal detectors which have a higher sensitivity have an extended response time.

(d) For a photographic film, why is the detective quantum efficiency in practice lower than the quantum

efficiency calculated taking into account only photon absorption and reflection losses?

(e) Highly sensitive photographic films have reduced spatial resolution compared with less sensitive films.

(f) Qualitatively justify the statement: ‘‘CCD camera detection arrays have high sensitivity, low noise, limited

dynamic range and limited frame rate performance’’.
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21 Optics and Photonics in Nature

In Nature’s infinite book of secrecy/ A little I can read.

William Shakespeare, Anthony and Cleopatra.

A lover of Nature responds to her phenomena as naturally as he breathes and lives.

Marcel Minnaert, The Nature of Light and Colour in the Open Air, Dover, 1954.

Nor ever yet / The melting rainbow’s vernal-tinted hues/ To me have shown so pleasing, as when first/ The hand

of science pointed out the path/ In which the sunbeams gleaming from the west/ Fall on the watery cloud.

Mark Akendale (eighteenth century).

In common with most academic physics, this textbook has presented an analysis of optics and photonics

as a product of the human intellect. There are, however, many examples of applied optics in nature,

which would be regarded as major technological achievements if they were the product of human

design, but which are solely the products of evolution and natural selection. We have already referred to

the outstanding example of the human eye, and to the use by insects of polarized light in navigation.

In this chapter we look in more detail at techniques of vision which occur throughout the animal

kingdom, and at the photonic detectors used by both animals and plants. We also describe examples

of fibre optics and polarimeters, and examples of interference phenomena involved in the coloration

of iridescent insects and fish.

21.1 Light and Colour in the Open Air

We start by following Minnaert and Akendale (see the epigraph above) in celebrating two of the

many non-biological phenomena that occur in the natural world, the rainbow and the aurora.

These glorious spectacles are examples of dispersive refraction and of spectral line emission,

respectively.

The simple geometry of the rainbow (as set out in Problem 1.3) gives a single arc at an angular

distance of 42� from the anti-solar point. Plate 7* shows two bows: the primary at 42� and a secondary

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
# 2007 John Wiley & Sons, Ltd

*Plate 7 is located in the colour plate section, after page 246.



at 52�. This secondary bow, which, although fainter, is often seen, is accounted for by two reflections

inside the waterdrop instead of one.1

The colours of the bow are due to dispersion: the refractive index for red light is less than for violet,

so that the primary bow is red on the outside, while in the secondary bow (in which the rays cross

over) the sequence is reversed. The colours are not a pure spectrum; each angle has a cusp-like

maximum at one wavelength with additional light from longer wavelengths. Note that the space

between the bows is dark: this shows that each bow is tracing a limiting value of angular deviation,

allowing light inside the primary and outside the secondary but not vice versa.

Our second example of atmospheric physics is the aurora (Plate 8).* This is an airglow in which

molecules are excited by energetic particles, mostly electrons, streaming from the Sun and channelled

by the Earth’s magnetic field into the two auroral zones round the north and south magnetic poles.

Collisions with the atmospheric molecules lead to their excitation and dissociation and light is

emitted in a series of spectral lines due to de-excitation and recombination of several different

molecular species. The colour of the aurora depends on the balance between these different lines. The

spectacular shapes follow the paths of the solar particles, typically forming rays or sheets at heights of

a few hundred kilometres.

The reader is recommended to pursue the study of these meteorological phenomena through the

reading list at the end of this book.

21.2 The Development of Eyes

It has long been recognized that more than one route of evolution has led to the development of eyes.

All vertebrate animals have similar eyes, which must share a common ancestry. Octopus eyes,

however, despite their external appearance, cannot have followed the same route of evolution, since

the retina has its network of nerve connections behind the surface of photodetectors, while in the

vertebrate eye they are in front. Evolution could not involve such a topological inversion, and a

separate path of development must have been followed. There is also a fundamental difference in eyes

that work in air and under water: in the human eye, for example, most of the converging power is at

the air/cornea interface, with the lens acting as a focussing device with only half the power of the

cornea, while in fish the water interface is relatively weak and focussing is achieved in a spherical

lens inside the eye. Insect eyes are more obviously of different types; many are multiple eyes, with

several different types of focussing systems. It appears that many different and independent

evolutionary routes have been followed to produce this diversity.

1The angular deviation D for k reflections is D ¼ 2ði � rÞ þ kðp� 2rÞ. The bow occurs when dD=di is zero,

giving dD=dr ¼ k þ 1. Using Snell’s law we can then find for the minimum deviation

cos i ¼ n2 � 1

k2 þ 2k

� �1=2

: ð21:1Þ

The bows with k > 2 would occur towards the Sun rather than away from it, and cannot be seen against the light

scattered and reflected directly from the raindrops.

The theory of the rainbow was first given by Descartes in 1637. An interesting account is to be found in the

classic Physical Optics by R.W. Wood, 3rd edn, Macmillan, 1934, including a discussion of the so-called

supernumerary bows seen immediately inside the primary in Plate 7.
*Plate 8 is located in the colour plate section, after page 246.
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The basic element, from which all separate developments have evolved, is the photoreceptor. Many

plants as well as animals have internal clocks which mark out a diurnal rhythm; this is kept in phase

with day and night by simple photodetectors. Even the human eye has a special set of photodetectors

dedicated to this task. The succession from a simple light detector to the wonderful optical systems

now to be found in nature follows a simple and logical route. The first step is the eye-cup, which is

commonly found in lower phyla such as the flatworms. If the receptors are recessed in a cup or pit,

some crude directivity is achieved; the animal can then react by moving towards or away from the

light. If the pit is filled with transparent tissue, the directivity is improved, again with obvious

advantage. If the surface of the transparent tissue is curved, the directivity is again improved, and a

simple eye has been evolved. Beyond this there is an amazing diversity of optical systems, some of

which we now describe.

21.3 Corneal and Lens Focusing

Eyes which depend on the focussing power of the front surface of a cornea are universal among the

land vertebrates, and are also found in spiders. The sharp focussing which is so important in human

eyes requires an optical system which is relatively free from chromatic and spherical aberrations.

There is no known system in nature for correcting chromatic aberration; the only relief is the

restricted wavelength range of the photoreceptors, and especially those that are involved with high-

acuity vision. Spherical aberration, however, is reduced in two ways, by shaping the surface of the

cornea and by grading the refractive index inside the lens. As we have seen in Chapter 2, axial and

peripheral rays refracted at a spherical lens surface focus at different distances. Camera lenses correct

for this by using non-spherical surfaces, which are more difficult to make, but biological processes lead

naturally to such a solution. In many types of eye, including human eyes, the front surface of the cornea

is non-spherical, with flattened outer edges; the radius of curvature of the outer parts is typically twice

that of the centre.

A second type of correction for spherical aberration is a graded refractive index in the lens itself.

This is the main source of correction in fish eyes, but it also plays a smaller part in the eyes of

terrestrial animals. Together these corrections provide a precision of focussing which, on-axis,

matches the diffraction limit set by the diameter of the eye pupil. In daylight the diameter of the pupil

of the human eye is about 2mm, and the image of a point source in the centre of the field of view is

about 1 minute of arc across.

Fish and other aquatic animals cannot follow the same focussing system as eyes operating in air,

since there can be only a small step in refractive index at the front surface of the eye. A simple lens,

either at the surface or internally, would necessarily have too long a focal length, since the maximum

refractive index in transparent biological materials is around 1.56. Focussing is instead achieved in a

spherical lens with graded refractive index, the fish-eye lens first described by Maxwell as an example

of a perfectly stigmatic system (Chapter 2).

A spherical lens with a single ungraded refractive index (Figure (21.1(a)) has serious spherical

aberration. The fish-eye lens (Figure 21.1(b)), with the continuous gradation of refractive index which

bends rays throughout the lens, gives a short focal length as well as a perfect focus. The spherical

geometry also gives a wide field of view over which sharp images are obtained. The ratio of focal

length to radius is around 2.5, giving a compact and very efficient eye.

It is not surprising, in view of the excellent performance of the graded-index lens, that it is found in

many unrelated marine animals. It is very surprising, however, to find a marine animal which uses

instead a totally different lens system, with multiple elements resembling those of the cameras

21.3 Corneal and Lens Focusing 467



described in Chapter 3. The animal is the copepod crustacean Pontella.2 The lens, which is sketched

in Figure 21.2, has three elements with refractive index 1.52. How such a complex system evolved,

and with what advantage, is a mystery.

Many animals have multiple eyes, which may operate independently in different directions and with

different resolving powers. An extreme form of multiple eye is found in the brittlestar Ophiocoma

wendtii,3 which has thousands of simple light detectors within its skeletal structure and distributed over

its whole body. It has no obvious eyes or brain, and yet uses a sensitivity to light so as to avoid

predators. The sensitive elements are calcite crystals 40 to 50mm in diameter forming lenses which

correct for spherical aberration, each focussing on a nerve bundle. Moreover, these microlenses are so

aligned as to avoid any doubling up of images from the normal birefringence of calcite.

21.4 Compound Eyes

The fly’s eye (Figure 21.3) is a well-known example of the compound eyes which are found in

more than half of the species of the animal kingdom. Instead of the single camera system, there are in

the various types of compound eye many optical units packed together over a spherical surface. The

advantage is the wide field of view, which may extend almost to 180�. In the simplest types the units

act independently, each with its own lens and photoreceptor, and each covering a limited field of view.

The whole eye covers a large field of view, with an angular resolution depending on the spacing of the

separate units. These are known as apposition eyes (Figure 21.4(a)).

(b)(a)

Figure 21.1 Ray tracing through a spherical lens: (a) with homogeneous refractive index; (b) with graded
refractive index

Figure 21.2 The multi-element eye of Pontella (after land, 1984)
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The resolution of this simple compound eye is typically about 1 degree, which is the field of view

of each unit; this contrasts with the high resolution, typically 1 arcminute, provided by camera eyes

such as the human eye. Light from the whole of this field is concentrated into a single detector unit, a

2M.F. Land, Photoreception and vision in invertebrates, Plenum Press, 1984, pp. 401–38.

3J. Aizenberg, A. Tkachenko, S. Wiener, L. Addadi and G. Hendler, Nature, 412, 819, 2001.

Figure 21.3 The surface of the compound eye of fly
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rhabdom, in which the light is transmitted through a light guide to receptor cells. A rhabdom may

taper down to a cylinder only a few wavelengths across, so that propagation is determined by wave

optics rather than simple geometry. Here nature has anticipated the development of fibre optics!

Propagation down an asymmetrical rhabdom can be sensitive to polarization, providing insects such

as bees with the polarimeter which they use for navigation by detecting the polarization angle of

scattered sunlight.

An entirely different and more complex use of a multiple lens system is shown in Figure 21.4(b).

Here the separate facets do not each have their own individual receptors, but in the superposition

eye they combine to produce a single image on a retina, as does the lens in the human camera eye.

Unlike the normal camera eye, however, the multiple units combine to give an erect image, and the

separate facets are redirecting light so that an emergent beam is travelling at an opposite angle to

the axis of the facet, as shown in the figure. This is achieved in two distinct ways, by refraction and by

reflection. A separated pair of lenses would behave in this way, as in a telescope (Figure 3.16), but the

units of the insect superposition eye each have instead a single nearly cylindrical elongated lens with

a radially graded refractive index, which has the same effect. Each detector on the retina receives light

from many facets of the multiple eye, giving a large increase in sensitivity; eyes of this superposition

type are common in moths and other nocturnal insects, while the apposition eyes are found in diurnal

insects such as flies and bees. The retina is placed at the curved focal surface, well separated from the

multiple lens.

The second type of superposition eye, encountered in the multiple eyes of shrimps and lobsters,

uses reflection optics to reverse the angle of travel of the incident rays (Figure 21.5(a)). The multiple

lens surface is replaced by an array of radially placed mirrors, forming a box-like structure. Within

each square box a ray can be twice reflected, focussing light onto the curved retina. (The figure shows

reflection in one plane only; reflection also occurs on the sides of the box for rays out of the plane of

the diagram.) This amazing application of reflection optics in the ‘lobster eye’ has provided the

inspiration for a design of an X-ray telescope system,4 which uses an array of long mirror boxes in

which the X-rays are reflected at grazing incidence.

(b)(a)

Figure 21.4 Compound eyes: (a) the apposition eye, in which each lens acts independently; (b) the
superposition eye, in which many facets contribute to each image point

Reflectors

Retina

Retina

Lens

Mirror
(a) (b)

Figure 21.5 Reflection optics in eyes: (a) the radial mirror system of the lobster eye; (b) the spherical mirror
system of the scallop eye
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21.5 Reflection Optics

Although there is no biological process which can make a metallic mirror, there are many examples in

nature of reflecting surfaces made from steps in refractive index. The reflectivity is often enhanced by

thin coatings, as described later, and is sufficient for reflection optics to be used in the reflecting

superposition eye described above. Another form of eye using reflection optics, shown in

Figure 21.5(b), is a camera eye, similar to the Schmidt telescope system (Figure 2.25). It uses a

concave mirror to form an image on a retina facing away from the light source. This reflector eye is

found in scallops and some other crustacea. An obvious disadvantage is that light must pass through

the retina to reach the reflector, with a consequent loss of sensitivity. As with the Schmidt telescope,

the advantage of the spherical optics is the large available field of view; correction for spherical

aberration is achieved, as in the Schmidt, at the centre of curvature of the mirror where the weak

corneal lens is shaped as seen in the figure.

Reflectors in biological organisms such as the shiny surfaces of fish scales, and the glint of reflected

light in cats’ eyes, are familiar examples of remarkably good specular but non-metallic reflectors.

Their high reflectivity derives from multiple layers of materials with alternating high and low

refractive indices. The layers are thin, and their reflectivity depends on the thin-film interference

phenomena described in Chapter 8. The reflectivity is therefore wavelength dependent, and the

reflected light is coloured, often showing a marked variation in colour and intensity with angle.

The multiple layers of a reflecting surface take many different forms. The shiny surface of fish skin

is due to stacks of plate-like cells in the scales; the same effect is used in the scallop’s eye

(Figure 21.6), in which the plates are of guanine (refractive index 1.83) separated by body fluid

(refractive index 1.33). The layers of guanine repeat at intervals of a quarter wavelength at the centre

of the visible spectrum, requiring a spacing of order 0.1 mm. Where there are several layers, the

reflectivity can exceed 90% over a restricted wavelength range. A smaller step in refractive index, or a

difference in thickness of the two types of layer, decreases the wavelength range of high reflectivity,

resulting in colours which may vary with the angle of reflection.

4R. Angel, Astrophysical Journal, 233, 364, 1979.

Figure 21.6 A biological reflector; the multi-layer reflector in the scallop‘s eye, in which layers of guanine
(n = 1.83) alternate with body fluid (n = 1.33). The scale bar is 1 mm. (From M. land, progress in Biophysics &

Molecular Biology, 24, 75-106, 1972)
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The iridescent colours in butterfly wings, and in particular the bright blue colours of many tropical

butterflies (Plate 9(a) and (b)),* are due to light reflected from scales on the wing surfaces. Here the thin-

film effect is achieved by the structure shown in Plate 9(c)–(e).* The cells on the surface form an array

of deep slots, which contain serrations at quarter-wave intervals. The projections form a multi-layer of

chitin (the main structural material of insects) and air in which the refractive index alternates between

1.54 and 1.0. The regular pattern of slots also acts as a diffraction grating. The maximum reflection is in

blue light, where natural pigments are rarely encountered. The interference nature of this structural

colour in the butterfly wing can be demonstrated by placing a drop of liquid such as acetone (n ¼ 1:36)
on the wing, displacing the air in the slots. This decreases the contrast in refractive index, and changes

the colour of the wing from blue to green. The blue colour returns when the acetone evaporates.

21.6 Fluorescence and Photonics in a Butterfly

Swallowtail butterflies in the Princeps nireus group add two further optical technologies, fluorescence

and photonic arrays, to the diffraction gratings described above. Fluorescence, in which

short-wavelength (ultraviolet) light stimulates emission at visible wavelengths, is also known in

some shrimps and birds. In butterfly wings, as the insect flies it provides a flashing signal at

� 505 nm, the peak sensitive wavelength of the butterfly eye.5 The efficiency of the fluorescent

emission from butterfly wings is enhanced by two photonic devices which are remarkably similar to

those developed recently for this purpose in LEDs: these are the distributed Bragg reflector (DBR)

and the photonic crystal slab (PCS). The fluorescence occurs within the PCS, which has a cellular

*Plate 9 is located in the colour plate section, after page 246.

5P. Vukusic and I. Hooper, Science, 310, 1151, 2005.

Figure 21.7 The photonic crystal slab (PCS) in a wing scale of the P. nireus butterfly. This is a scanning
electron microscope image of the underside of the PCS. The length of the scale line is � 1.4 mm. (Vukusic P and

Cooper I., (2005), Science, 310, 1151).
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structure forming a photonic array. This is arranged to inhibit unwanted propagation in the plane of

the slab while allowing propagation perpendicular to the slab. The DBR is below the slab, reflecting

light upwards. Figure 21.7 shows the quasi-periodic structure of the PCS slab; it is about 2mm thick,

and comprises an array of hollow cylinders, diameter �240 nm, spacing �340 nm. The three-layer

reflector DBR is immediately below this slab.

21.7 Biological Light Detectors

The process of detection of light is very similar over the whole of the animal world. Although the

evolution of the geometric optics of eyes has evidently followed several different routes, all have

followed the same basic system, involving a protein molecule with a photonic absorption in the visual

range and a signalling system to convey a nerve impulse to the brain. The photoreceptor molecule

correspondingly has two parts, a chromophore and an opsin. In contrast to most proteins, which are

colourless with no specific absorption of light in the visual range, the chromophore is a pigment with

a resonant response to light. The basic chemical structure which achieves this both in eyes and in

plants is a carbon chain with alternating single and double bonds, the conjugated chain. The universal

animal chromophore is retinal, shown in Figure 21.8; it has a similar structure to vitamin A. The

combination with opsin forms the detector molecule rhodopsin.

Electrons in the conjugated carbon chain of retinal are held only loosely, and the absorption of a

photon can temporarily disrupt a double bond allowing it to rotate before reforming in an isomeric

form. Figure 21.8 shows the two spatial forms, 11-cis-retinal and its trans configuration to which it is

converted when it absorbs a photon of light with a wavelength near 500 nm. The elongated rhodopsin

molecule is dipolar, and consequently the photon absorption is sensitive to the polarization of light.

Parts of many insect eyes contain aligned arrays of rhodopsin, allowing them to detect the angle of

polarization of the sky, particularly in ultraviolet light.

The opsin signals a nerve impulse to the brain; the retinal then breaks from the opsin, recovers to the

cis isomer and attaches again to form rhodopsin. The process takes a few milliseconds, after which the

receptor is ready to receive the next photon. Prolonged exposure to bright light results in failure to

recover, which is experienced in ‘after images’ of complementary colours. There are also random nerve

impulses from the eye, the ‘noise’ of the detection process, and there is a very complex recognition

process involved in distinguishing real signals from noise. Recognition of a light stimulus requires the
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Figure 21.8 The chromophore 11-cis-retinal, and the trans configuration to which it is converted when it
absorbs a photon of light with a wavelength near 500 nm

21.7 Biological Light Detectors 473



simultaneous firing of several cells; in fact the most sensitive condition in the eye occurs when light

falls on a considerable area of the retina, corresponding to at least one square degree in the field of view.

The most sensitive detection corresponds to about 50 photons falling on this area of retina, which

corresponds to about 100 photons on the cornea, since half of the light is lost on its way to the retina.

In Chapter 20, we defined the quantum efficiency Z as the ratio of detections to the number of

incident photons. In the human eye Z is only about 10�2 at best; however, the astonishing adaptability

of the eye is such that Z remains above 10�3 over a range of 107:1 in light intensity. The adaptation

involves several processes, including a change of up to a factor of 10 in the area of the pupil; the most

important is a change between two types of detecting cells, the rods and the cones. The cones are

concerned with higher intensities, and in the human eye (as in other primates) they contain three

forms of rhodopsin, absorbing at three different wavelengths: this provides for colour vision in

sufficiently bright light. The rods are the most sensitive elements, but they are not colour selective; in

consequence, colours cannot be seen in faint illumination, as for example in moonlight. Many stars

are coloured, but, except for the brightest, they can only be detected by rods and appear colourless.

Rhodopsin occurs with an entirely different function in the halobacteria, which are microbes which

live in very salty water. They actually need an external concentration of about 20% sodium chloride,

and the protoplasm inside the cell contains about 5%. But their life style also needs potassium chloride,

which must be present inside the cell at about 30% even though the environment may contain 1000

times less. The chemical engine that performs the necessary sorting of ions is powered by sunlight,

which is absorbed by patches of rhodopsin in the cell membrane. In the process of generating ATP, the

universal source of biological energy, ions are exchanged between the interior and exterior, leaving

sodium outside and potassium inside. In halobacteria photon energy is used solely to drive this ion

pump, and not to detect light or to use the energy to synthesize complex molecules.

21.8 Photosynthesis

Resonance in a conjugated carbon chain is also at the heart of the green pigment chlorophyll, which is

responsible for photosynthesis in plants. Chlorophyll a (Figure 21.9(a)), found in all eukaryotes, has a
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Figure 21.9 The structures of (a) chlorophyll a and (b) b carotene, the two principal agents of photosynthesis
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resonance at 680 nm; chlorophyll b, found in vascular plants, has a very similar structure with a

resonance at 650 nm. Figure 21.9(b) shows the simpler molecule b carotene, which is associated with

chlorophyll in many plants and contributes to the photosynthetic process. Carotene, which gives

colour to many plants including carrots, is probably a stage in the synthesis both of chlorophyll and of

rhodopsin; it is one of the group of xanthophylls which contribute to the colours of a wide variety of

proteins in diverse substances such as egg yolks, shrimps, corn and fruit.

Photosynthesis in plants, and the process of vision, both involve the movement of an electron in

response to light. In chlorophyll the process is very complex. The free electron goes to a receptor

molecule which uses the energy to synthesize ATP. The positively charged chlorophyll then removes

an electron from other molecules; four such actions result in the breakdown of water molecules into

oxygen.

One of the most remarkable aspects of all these processes is the complexity of the molecules.

Chlorophyll has the chemical formula C55H72MgN4O5, 11-cis-retinal is C20H28O, and carotene is

C40H56. Despite their complexity, it seems that each of these proteins has evolved along several

different evolutionary routes, which have converged on the same complex but identical molecules.

Given the diversity of the natural world, it is remarkable that the solutions of the problems of

detecting light have been arrived at within such a small range of molecular structures. The evidence is

all around us in the universal chlorophyll green of plants, with carotene and its relatives contributing

to the colours of leaves in autumn and in fruit.
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Appendix 1: Answers to Selected
Problems

Full solutions to all problems are available to instructors by emailing their request to the Wiley

website.

1.1 R ¼ 0:087mm.

1.8 y � 12 arcminutes.

2.3 The ratio is ðn� 1Þ=n.

2.4 The change is a factor �7.7.

2.19 PC ¼ 4:65D, PF ¼ �2:33D. The radius of the concave side of the flint lens is �267mm.

2.21 The plate is thicker by 1:3 mm at the edge.

3.1 Diameter 1.7mm.

3.5 u1¼20m.

3.6 (a) �8; (b) 1.9 cm; (c) 5mm; (d) 1.57 cm.

3.7 19mm closer to the objective.

3.8 Additional length 5 cm.

4.5 Group velocities v=2, 3v=2, 2v, c2=v:

4.7 1.2 Hz.

4.10 25 days.

4.11 0.006Hz.

4.12 Aberration 21 arcseconds. Parallax 0.33 arcseconds. Parallax and aberration are in quadrature.

5.2 (i) R ¼ 32%, T ¼ 68%. (ii) The total fraction reflected is 2:6� 10�3, half that of the two-layer

system. (iii) B ¼ 5� 10�8 T. U ¼ 9:96� 10�10 Jm�3. (v) 6� 108 N.

5.3 (b) Case (i): ð1� T12Þ ¼ 0:006 38, and ð1� T1f2Þ ¼ 0:003 20. The interposed film gas cut the

loss by 50%. Case (ii): ð1� T12Þ ¼ 0:1696, and ð1� T1f2Þ ¼ 0:090 67, and the loss is cut by

46.5%.

5.4 The intensity reflected is 4%. A coating with refractive index 1.225 is needed.

5.5 10�7 m.
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5.6 7:7Vm�1.

5.7 Irradiance ¼ 5� 107 Wm�2. Peak electric field ¼ 1:9� 106 Vm�1. Peak magnetic field ¼
6:3� 10�3 T.

5.12 1:7� 1048 kg. The corresponding black hole radius is 2:5� 1021 m.

6.1 (i) NA¼ 0.3, � ¼ 2%, (ii) 1:05 mm, (iii) 49:6 km, (iv) 2Mbit s�1, (v) 2 ns km�1 and

0:1 ns km�1

7.9 0.85 mm.

7.10 (1/8) I0.

7.11 6.3mm.

7.15 Major axis at 52�; axial ratio ¼ cot 28� ¼ 1:88:

8.1 (i) 6� 10�5 radians, or about 0.2 arcminutes. (ii) Radii 0.54mm and 0.94mm. (iii) N ¼ 500.

8.10 N1 ¼ 33 333; N2 ¼ 33 332. y1 ¼ 4:5mrad; y2 ¼ 6:8mrad.

8.11 2.62 cm.

8.12 ð1þ FÞ ¼ 16.

8.13 h ¼ 0:216mm.

9.1 (i) 540 nm, (ii) 170metres, (iii) 5 000 630� 1 nm.

9.3 �N ¼ 0:23.

9.6 Approximately 10 cm.

9.8 2.7 atmospheres.

10.1 (i) y ¼ ln=d ¼ 7� 10�3 n radians for red light and 4:5� 10�3 n radians for blue light. (ii) 20

fringes. (iii) 20 interference fringes between zeros of the single slit pattern. (iv) 4 arcseconds.

10.9 4.5m.

10.11 (i) 2 arcminutes, (ii) 0.5 arcminutes, (iii) 0.03 arcseconds, (iv) 10�3 arcseconds, (v) 4� 10�3

arcseconds.

10.12 450 km.

10.15 (i) 15m.

11.1 (i) (a) 16:0�, 33:4�, 55:6�: (b) d ¼ 1:98� 10�10 m, y ¼ 22:9�, 51:1�.

(ii) The spectrograph would distinguish a wavelength separation of 50 nm in the first order

and 25 nm in the second order.

12.1 The dispersion dn=dl ¼ 3:3� 10�4 nm�1, giving resolving power l=dl � 1:7� 104. This

easily resolves the sodium doublet but not the hydrogen doublet. The angular separation of the

sodium lines, using equation (12.2), is 4� 10�5 radians ¼ 0:0023�.

12.2 15 000.

12.3 (i) 4000, (ii) 18,000, (iii) 1:5� 106.
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12.4 (i) m ¼ 4� 104, (ii) 100 arcseconds, (iii) 1:6� 106.

13.1 The transverse coherence length for the Sun is approximately 120l ¼ 70 mm; for starlight it is

approximately 20 cm.

13.2 1.1m; 6 kHz; 8� 10�9 nm.

13.3 (a) 1010 Hz; (b) 8:84� 10�3 nm; (c) 0.03m.

13.6 (ii) 0.1 nm.

13.7 t ¼ 20 ms, N ¼ 100.

14.1 1570 fringes per mm.

15.1 (i) (a) 3� 1018 s�1, (b) 5� 1020 s�1.

(ii) (a) total pulse energy 67.5 J and peak power 675MW, (b) total pulse energy 159 J and

peak power 1:59� 109 W.

(iii) Mode separation 500MHz; four modes lie within the gain curve.

15.3 For l ¼ 10 mm, T ¼ 2078K.

15.5 For He–Ne laser �nD ¼ 1:52GHz. For Arþ, �nD ¼ 4:9GHz.

15.6 Minimum length is 0.136m.

15.7 (a) 0:67mrad ¼ 0:038�. (b) Radiance R ¼ 2:50� 109 Wm�2 sr�1. (c) T � 2:7� 104 K.

15.8 (a) Threshold gain coefficient gthres ¼ 0:41m�1. (b) Population inversion 4:78� 1022 m�3.

15.9 Ratio is 1� expð�2Þ ¼ 86:5%. Photon flux ¼ 5:8� 1024 s�1 m�2.

15.10 24 modes are present. To ensure oscillation in a single mode the cavity must be less than 3 cm

long.

15.12 �nD � 61MHz, �nP � 790MHz. The transition is homogeneously broadened.

16.8 (a) 2:51� 103 K. (b) Prad ¼ 1:46� 1013 Nm�2 ¼ 1:46� 108 bar ¼ 4:3� 10�4 Ptot.

16.9 0.47W.

16.10 (a) 1.5GHz.

(b) Only three modes can oscillate.

16.11 (a) 2mrad; (b) 0.1m; (c) 10 cm; (d) 50m.

16.12 1.9m, 0.085m.

17.4 Reflectance R ¼ 0:32:

Threshold gain ¼ 2:65� 103 A cm�2. Threshold current ¼ 663mA.

17.6 Threshold current density ¼ 3650A cm�2.

17.8 (a) �l ¼ 15:4 nm; (b) tc ¼ 3:2� 10�14 s; (c) lc ¼ ctc ¼ 9:6 mm.

17.9 182MHz.
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17.11 (a) For GaAs–air interface R ¼ 0:32. Power absorbed ¼ 6:75mW.

(b) Power deposited into crystal ¼ 4:05mW.

(c) Rate of photon emission ¼ 1:28� 1016 photons s�1.

18.1 (i) For neon ðM ¼ 20Þ the Doppler line width is 1:66� 10�3 nm. The frequency bandwidth is

1.2 GHz. (ii) For the Ha line the half-width is 0.017 nm.

18.2 (a) 9:58� 1020 s�1; (b) 3:0� 10�9 kg.

18.4 g ¼ 6000. o ¼ 5:9� 107 rad s�1. T ¼ 107 s. Radius R ¼ 5:12m. Power ¼ 2:28� 10�6 W per

electron. Total power ¼ 76:2 kW. Characteristic energy of emitted photons ¼ 1:97� 10�15 J ¼
12:3 keV.

18.5 (a) �l=l � 4:5� 10�5; (b) �l=l � 4:1� 10�4.

19.2 Compton wavelength for the electron ¼ 2:43� 10�12 m.

Compton wavelength for the carbon atom ¼ 1:09� 10�16 m: For electron, l0 ¼ 0:736� 10�10 m.

For carbon, l0 � 0:712� 10�10 m.

19.3 �l ¼ 565� 488 ¼ 77 nm; ��n ¼ 3233 cm�1.

19.5 Rotation angle is 1.24 radians.

20.1 The average photon carries an energy 3:97� 10�19 J. No. photons s�1¼ 1:4� 1015.

20.3 G ¼ ð4Þ14 ¼ 2:67� 108: Electron arrival rate at the anode ¼ 2:67� 1013 per second.

Va ¼ 21mV:

20.4 lc < 8:7� 10�5 < 0:87 mm.

20.5 Eg ¼ 0:7 eV; Ec ¼ 5:5 eV.
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Appendix 2: Radiometry
and Photometry

The science of measurement of energy in electromagnetic waves over the entire spectrum is

radiometry, and its application to the human visual response is photometry. The system of units in

radiometry is based on SI units; for example, energy density is measured in units of joules per cubic

metre. In photometry, however, there has been a plethora of units, arising from the need to define the

illumination or visibility of a surface in terms which depend on the spectral characteristics of the

human eye. We start with the basic concepts of radiometry.

The radiant flux � of a source is the rate of emission of energy, measured in watts. The radiant flux

per unit area is termed either the radiative exitance M, when the radiation is leaving the surface, or

irradiance E,1 when radiation is incident on it. The radiant intensity I is the radiant flux per unit solid

angle

E ðor MÞ ¼ d�

dA
; I ¼ d�

d�
: ðA2:1Þ

For an isotropic radiator, e.g. a spherical star, � ¼ 4pI.
Suppose we observe radiation (reflected or emitted) from a small planar surface of area dA at angle

y off its normal direction through a small aperture subtending at the source a solid angle d�. We can

define the radiance L (along some direction of interest) as the radiant flux per unit solid angle

(steradian) per unit projected area of the source (dA cos y):

L ¼ 1

cos y
d2�

d�dA
¼ 1

cos y
dI

dA
¼ 1

cos y
dM

d�
; ðA2:2Þ

which is measured in W sr�1 m�2.

By definition, a perfectly diffusive surface has a radiant intensity proportional to the projected area,

or dIðyÞ ¼ dIð0Þ cos y. This is Lambert’s cosine law. Equivalently, such a surface shows constant

radiance when viewed from any direction: LðyÞ ¼ Lð0Þ ¼ L. Integrating equation (A2.2) with the

help of d� ¼ 2p sin ydy yields M ¼ 2pL
R p=2
0

cos y sin ydy ¼ pL. Blackbodies, for example, radiate

like perfectly diffusive surfaces.

The irradiance of a flat surface under a hemispherical surface with radiance L is pL; it is useful to
check that this is the same for a flat surface under an infinite parallel slab.

In radiometry we are often also concerned with the spectrum of the radiation, and each of the terms

already defined may require the restriction ‘per unit frequency band’, or occasionally ‘per unit
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1This appendix features standard nomenclature, such as Ee for irradiance and Ie for radiant intensity. But in the

rest of the book, for the sake of simplicity, we denote irradiance by I and intensity by N.



wavelength range’. For example, the irradiance may be the integral of a spectrum of electromagnetic

radiation with a specific radiant intensity IðnÞ or IðlÞ:

I ¼
Z

IðnÞdn or I ¼
Z

IðlÞdl: ðA2:3Þ

Radiance and irradiance may also be expressed as a flow of photons instead of energy. The conversion

factor depends on the spectrum; at the peak sensitivity of the eye, in the yellow–green region

(wavelength 555 nm) in the visible spectrum, the energy of a photon is 3:6� 10�19 joules, so that

1watt is equivalent to 2:8� 1018 photons per second.

Photometric units involve the response of the human eye, usually expressed in terms of

wavelength. A standard response curve has been defined by the CIE (Commission Internationale

d’Éclairage); this allows the relation between luminous flux (including the response of the eye) to

radiant flux to be plotted as in Figure A2.1. (The actual bright-light response of an individual eye may

differ from this standardized curve; the low-light response is markedly different, with a peak at

510 nm rather than 555 nm.) The photometric equivalents of the radiometric quantities already

defined include a factor VðlÞ, the luminous efficiency; for example, the luminous flux �v is related to

the spectral distribution of the radiant flux �e by

�v ¼ K

Z
VðlÞ�eðlÞdl: ðA2:4Þ

The constant K depends on the system of photometric units, of which there have been many. The most

useful photometric units are shown in the table below, with their radiometric equivalents. Radiometric

quantities are often written with a subscript ‘‘e’’ (for electromagnetic) and photometric with a ‘‘v’’

(for visual).

Figure A2.1 The standard relation between luminous flux and radiant flux, over the visible spectrum, as
defined by the CIE. The peak sensitivity of the eye is at 555 nm, where 1 watt is equivalent to 683 lumens

Radiometric system Unit Photometric system Unit

Radiant flux �e W Luminous flux �v lumen (lm)

Irradiance EeWm�2 Illuminance Ev

(or radiant exitance Me) (or luminous exitance Mv) lux ¼ 1mm�2

Radiant intensity Ie W sr�1 Luminous intensity Iv candela (cd)¼ lm sr�1)

Radiance Le Wm�2 sr�1 Luminance Lv lmm�2 sr�1 ¼ cdm�2
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The word candela for the SI unit of luminous intensity is a reminder that light was originally

measured in terms of candlepower. Since 1979 the candela has been defined as the luminous intensity

corresponding to (1/683) watts per steradian being emitted in monochromatic radiation of frequency

5:40� 1014 Hz (note that the corresponding wavelength is 555 nm, the peak of visual sensitivity,

where VðlÞ ¼ 1). But since a candela is also defined as 1 lumen per steradian, this implies that the

constant K in equation (A2.4) is 683 lumens per watt.

A2.1 Further Reading

M. Born and E. Wolf, Principles of Optics, Cambridge University Press, 1999.

W. R. McCluney and R. McCluney, Introduction to Radiometry and Photometry, Artech House, 1994.

A2.2 Some Examples

1. Lambert’s law: the Sun and the Moon. To a first approximation, the luminance of the Sun’s disc is

uniform, while that of the Moon falls from centre to limb. If the surface obeyed Lambert’s law the

luminance would remain constant. (Halstead2 urges a useful distinction beteween the terms

‘‘brightness’’ for the subjective visual impression, and ‘‘luminance’’ for its objective, measurable

correlate. In this spirit, we avoided saying ‘‘the Sun’s disc is uniformly bright’’.)

2. Solar photometry: illuminance and luminance (the photometric equivalents of irradiance and

radiance). Suppose a luminous flux�� of sunlight falls on Earth, which has a projected area�AE.

If the Earth and Sun are separated by a distance r, the Earth subtends at the Sun a cone of angular

diameter yE and solid angle ��E ¼ �AE=r
2 ¼ pðryE=2Þ2=r2 ¼ py2E=4. Likewise the Sun

subtends at the Earth yS ¼ 1 rad=120 and �S ¼ py2S=4 ¼ ðp=4Þð1=120Þ2 sr. The luminance at

Earth can be written

Lv ¼
��

��E�AS

¼ ��

��Er2��S

¼ ��

�AE��S

: ðA2:5Þ

Since the illuminance of the Earth at normal incidence is ��=�AE ¼ 105 lmm�2, we find a

luminance Lv ¼ ð105 lmm�2Þð4=pÞð120Þ2 sr�1 ¼ 2� 109 cdm�2.

3. Irradiance: moonlight versus sunlight. Assuming the Moon’s surface is perfectly diffusive, we

compare the radiant flux (falling on the Earth) from moonlight at full Moon with that from

sunlight.

Let S be the irradiance of full sunlight at the Moon (assumed the same as at the Earth). With

radius RM, the Moon presents a projected area of pR2
M to the Sun, thereby receiving a flux of SpR2

M.

The full Moon will reflect a fraction aM ¼ 0:12 of this, where aM is the average reflectance or

albedo of the Moon’s surface. Sunlight falling on each spot of a perfectly diffusive surface is

scattered isotropically into the hemisphere (2p radians) over the ground. If the earth is at distance d

from the Moon, it subtends a solid angle of��E ¼ pR2
E=d

2 and will capture a fraction��E=2p of

the scattered sunlight. The flux of moonlight falling on the Earth is therefore

2C.P. Halstead, ‘‘Brightness, luminance, and confusion’’, Information Display, March, 1993.
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��M ¼ aMSpR2
MðR2

E=2d
2Þ. But the flux of sunlight falling on the Earth, ��E ¼ SpR2

E, and with

the Moon’s apparent diameter as seen from the Earth of about 1/110 radian, we find

��M=��E ¼ ðaM=2ÞðRM=dÞ2 ¼ ð0:12=2Þð1=220Þ2 ¼ 1:2� 10�6: ðA2:6Þ

Since the Earth presents equal projected areas to the Sun and Moon, this is also the predicted ratio

of irradiances. (The observed ratio is about 2� 10�6. The Moon evidently back-scatters almost

twice the light it would if it had a Lambertian surface.)

4. A burning glass: the illuminance of an image made with a simple converging lens. The angular

width of the Sun is (a ¼ 1=120 radians). Suppose the lens has focal length f ¼ 100 cm and

diameter D ¼ 10 cm. Rays traced through the vertex of the lens do not bend but form in the focal

plane an image of the Sun with a diameter fa ¼ 8mm. If the illuminance of the Sun at normal

incidence is S ¼ 105 lmm�2, the lens will capture a flux of SpD2=4. The illuminance of the image

is therefore ��=�A ¼ SðpD2=4Þ=ðpf 2a2=4Þ ¼ SðD=faÞ2 ¼ 107 lmm�2, a hundred-fold increase

over normal sunlight.

5. Radiance: comparison of a laser and a thermal emitter. A high-pressure mercury lamp may emit

some hundreds of watts from an area of about 1 cm2, giving a source radiance of order

2� 106 Wm�2 sr�1. A typical 5 milliwatt He–Ne laser with a waist diameter of 0.5mm

concentrates light into a beam with angular diameter 1.6mrad (see Section 15.8). The solid

angle is 2� 10�6 steradians and the emitting area is 2� 10�7 m2, giving a radiance of

1:2� 1010 Wm�2 sr�1, i.e. 6000 times larger than the thermal lamp.
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Appendix 3: Refractive Indices
of Common Materials

The values in the table are for wavelength 589 nm.

Optics and Photonics: An Introduction, Second Edition F. Graham Smith, Terry A. King and Dan Wilkins
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Material n

Gases

Air (0�C, 1 atm) 1.000 29

Hydrogen (0�C, 1 atm) 1.000 13

Liquids

Carbon dioxide 1.20

Water (0–20�C) 1.333

Ethyl alcohol 1.36

Olive oil 1.47

Sugar solution (30–80%) 1.38–1.49

Benzene 1.50

Solids

Ice 1.31

Fused quartz 1.458

Plexiglas 1.51

Sodium chloride 1.544

Crown glasses 1.52–1.89

Flint glasses 1.58–1.89

Diamond 2.417

Iodine crystal 3.34





Appendix 4: Spectral
Lineshapes and Linewidths

The spectral widths of emission lines from atoms or molecules observed by a spectrometer are

dependent on the nature of the source, its operating conditions and also on the resolution of the

measuring spectrometer. Even if the spectrometer has an infinitely fine resolution the recorded

spectral width of the emission line is not extremely narrow but has a finite width. The broadening of

spectral lines can be attributed to three mechanisms: natural broadening, collisional or pressure

broadening and Doppler broadening.

A4.1 Natural Broadening

Excited states in atoms and molecules have a finite lifetime which, through the uncertainty principle,

confers an uncertainty in the energy of the state and hence a finite frequency width to the transition.

This natural broadening is determined by the radiative emission process. Natural broadening is

usually not the dominant broadening mechanism but sets the minimum value to the linewidth.

We can gain an insight into natural broadening by considering the classical (i.e. non-quantum-

mechanical) model of the electron in the atom. The electron may be considered as a harmonic

oscillator which is damped by the energy lost by radiation. The equation of motion of the electron

written in one dimension for movement along the x axis is of the form md2x=d2tþ
mgdx=dt þ mo2

ox ¼ 0. Here g is the damping decay rate, g ¼ e2o2
0=6pE0mc

3. The initial total energy

of the electron is E0 ¼ mo2
0x

2
0=2, where x0 is the amplitude of the oscillation. A part of the energy is

lost radiatively in each period of the oscillation. The total power P radiated is given by the Larmor

formula discussed in Chapter 18; from equation (18.2), P ¼ e2a2=6pE0c3, where a is the acceleration.

The rate of energy loss is given approximately by �dE=dt ¼ ðe2o2
0=6pE0mc

3ÞE. This has the solution
EðtÞ ¼ E0 expð�gtÞ.

This is the spontaneous decay rate on the classical model. The lifetime of the state is

t ¼ 1=g ¼ 6pE0mc3=e2o2
0. The time dependence on this model of the electric field radiated by the

atom is EðtÞ ¼ E0 expð�gt=2Þ: expðio0tÞ.
The frequency dependence is obtained by taking the Fourier transform. The irradiance distribution

IðnÞ is proportional to jEðnÞj2 giving

IðnÞ ¼ I0

2p
g=2p

ðn� n0Þ2 þ ðg=4pÞ2
ðA4:1Þ

IðnÞ / 1=½ðn� n0Þ2 þ ð1=4ptÞ2� ðA4:2Þ
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where I0 ¼
R1
0

IðnÞdn. This line profile has the Lorentzian lineshape shown in Figure 12.3. The full

width at half maximum (FWHM) is �nN ¼ g=2p ¼ 1=2pt.
This linewidth is also obtained from applying the uncertainty principle�E:�t � �h. Radiation from

an atom which has a certain radiative lifetime has an uncertainty in the energy of the level

h�n � �h=�t, leading to the natural linewidth.

In terms of the linewidth �nN, IðnÞ / 1=½ðn� n0Þ2 þ ð�nN=2Þ2�, and when normalized,

gðnÞN ¼ 2=p�nN
1þ ½2ðn� n0Þ=�nN�2

: ðA4:3Þ

In general both the upper and lower levels of a transition have finite lifetimes and linewidths as

shown in Figure 12.2. The uncertainty in the frequency of the emitted radiation involves the

uncertainties in the energies of both levels. The frequency distribution remains a Lorentzian function

modified to include the lifetimes of both levels. For the levels labelled 1 and 2 in Figure 12.2 the

linewidth (FWHM) �nN is related to the lifetimes of the two levels, �nN ¼ 1=2pð1=t2 þ 1=t1Þ.
Natural broadening is an example of a homogeneous broadening mechanism, in which all the

atoms are influenced in the same way. Every atom making the same transition has an identical line

profile and linewidth. The natural lifetimes of atomic electric dipole transitions are t � 10�8 s, which

gives natural linewidth values �n � 15MHz. In terms of wavelength, �l ¼ l2�n=c � 1:4�
10�14 m ¼ 1:4� 10�5 nm. Generally the natural linewidth is much less than the linewidths due to

collisional or Doppler broadening.

A4.2 Collisional or Pressure Broadening

Collisional or pressure broadening is due to the interactions between an emitting atom or molecule

and its surroundings. An example is collisions between atoms in a gas at a certain pressure. In liquids

and solids a similar broadening arises from interactions between the emitting species and its close

neighbours and with acoustic phonon vibrations. In gases at pressures above about 0.1 bar collisions

and interatomic forces become significant. Collisional broadening is the dominant mechanism in

high-pressure lamps and in plasmas. The interatomic interactions include resonant and non-resonant

interactions between dipoles, longer range van der Waals forces and shifts and broadening of the

energy levels by Stark broadening due to the local electric fields. Since an excited atom can undergo

interaction with several other perturbing atoms in a brief instant of time, the overall effect is an

average over the various perturbations, each with varying collision times. For an atom emitting a

steady wavetrain the collisions may be soft, leading to a small change of frequency or phase of the

emission. Those collisions in which there is termination of the emission or in which the phase of the

emission after the collision is completely out of phase with that before the collision are termed hard

collisions. The emitted wavetrain perturbed by a collision is described by a damped harmonic

oscillator in the classical electron in an atom model. In a gas the mean time between collisions tc is

inversely proportional to the gas density N and the mean relative velocity v of the perturbing atoms,

tc ¼ 1=Nsv, where s ¼ pr2 is the collision cross-section for collision radius r. Collisional broad-
ening is also a homogeneous broadening mechanism and is always accompanied by natural

broadening. Together the spectral distribution is Lorentzian,

IðnÞ ¼ I0

p
ð�nn þ�cÞ

1

½ðn� n0Þ2 þ ð�nn þ�ncÞ2�
ðA4:4Þ
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where the natural broadened linewidth is �nn ¼ 1=2pð1=2t1 þ 1=2t2Þ and the collisional broadened

linewidth is �nc ¼ 1=ptc. The linewidth is increased over that for natural broadening, and with both

natural and collisional broadening the FWHM linewidth is

�n ¼ 1=2pÞ½ð1=t1 þ 1=t2Þ þ 2=tc� ¼ ð1=2pÞ½1=t1 þ 1=t2 þ 2Nsn�ð ðA4:5Þ

The collisional linewidth is proportional to the density of colliding atoms. Hence it is the dominant

broadening mechanism in high-pressure and highly ionized gases.

A4.3 Doppler Broadening

In a gas the absorption or emission spectral lines of moving atoms are broadened due to the motion of

the atoms; this is termed Doppler broadening. The observed frequency of an emitting atom moving

with a velocity v relative to an observer, for v � c, is n0 ¼ nð1� v � r=cÞ where r is a unit vector in

the direction from the observer to the emitting atom. Setting a coordinate system in which r is along

the x axis, the probability of an atom of mass M having a velocity between vx and vx þ dvx at

temperature T is given by the Maxwell distribution

PðvxÞdvx ¼ ðM=2pkTÞ 1
2
expð�Mv2x=2kTÞdvx: ðA4:6Þ

The probability of an emitted wave having a frequency between n0 and n0 þ dn0 is a Gaussian

function. The normalized Doppler-broadened line profile is

gðnÞ ¼ ðc=n0ÞðM=2pkTÞ1=2 exp½ð�M=2kTÞðc=n0Þ2ðn� n0Þ2�: ðA4:7Þ

The Doppler linewidth (FWHM) is

�nD ¼ 2n0½2kT ln 2=Mc2�1=2: ðA4:8Þ

Doppler broadening is an example of an inhomogeneous broadening mechanism. In this the

conditions of the emitting species are different, and the line profile is derived from many atoms

with differing velocities and centre frequencies, so that the shifts in frequency differ between the

atoms. When expressed in terms of the linewidth �nD the normalized line profile becomes

gðnÞ ¼ ð2=�nDÞðln 2=pÞ1=2 expf�4 ln 2½ðn� n0Þ=�nD�2g: ðA4:9Þ

The Doppler linewidth is proportional to the observing frequency n0 and
ffiffiffiffi
T

p
, and hence may be

reduced by measurement at long wavelength, e.g. at microwave or radio wave frequencies, or at low

temperature. The effect of Doppler broadening on a measurement may also be reduced or almost

eliminated by collimating the moving source and observing at right angles.

A4.4 Observed Lineshape

The actual lineshape of a particular observation of emission from a gas will have a contribution from

natural broadening and may have a contribution from collisional or Doppler broadening, and hence
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there will be a combination of Lorentzian and Gaussian line profiles; these functions can be combined

mathematically by the convolution procedure. The combination is termed a Voigt profile. In addition

the wavelength response of the measuring instrument, termed its instrumental profile, has the effect of

increasing the apparent (observed) width.
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Appendix 5: Further Reading

Chapter 1

Introductory, Historical and General

A.R. Hall, All was Light - an Introduction to Newton’s Opticks, Clarendon Press, 1993.

M.I. Sobel, Light, University of Chicago Press, 1987. [Thoughtful tour through the many ramifications of light in

physics (including its history), technology, color vision, astrophysics, etc.]

D. Park, The Fire Within the Eye. A Historical Essay on the Nature and Meaning of Light, Princeton University

Press, 1997.

Semi-popular. Prerequisites: Basic Algebra and Trigonometry

J.H. Mauldin, Light, Lasers and Optics, Tab Books, 1988. [Wide-ranging survey of classical and modern optics.]

G. Waldram, Introduction to Light, Prentice Hall, 1983. [Well described by its subtitle, ‘The physics of light,

vision, and color’.]

College Level. Texts Comparable to the Present One. Prerequisites: Calculus and 1–4 Years of Physics

G.R. Fowles, Introduction to Modern Optics, Holt, Rhinehart and Winston, 1975 (Dover reprint, 1989). [Concise

text for the student familiar with Maxwell’s equations.]

O.S. Heavens and R.W. Ditchburn, Insight into Optics, John Wiley & Sons, 1991. [Compact text with some 470

sections squeezed into its 300+ pages.]

E. Hecht, Optics, 4th edn, Addison-Wesley, 2002. [Comprehensive exposition.]

J.R. Meyer-Arendt, Introduction to Classical and Modern Optics, 4th edn, Prentice Hall, 1995. [Emphasizes the

vergence approach to geometrical optics.]

F.L. Pedrotti, L.S. Pedrotti and L.M. Pedrotti, Introduction to Optics, 3rd edn, Pearson Prentice Hall, 2007.

[Careful, detailed treatment.]

V. Ronchi, The Nature of Light, Harvard University Press, 1971.

J. Simmons andM. Guttmann, States, Waves and Photons: A Modern Introduction to Light, Addison-Wesley, 1970.

Reference Works

M. Bass et al. (eds),Handbook of Optics, vol. I (1995), vol. II (1995), vol. III (2001), vol. IV(2001), Optical Society

of America and McGraw-Hill.

C. Webb and J. Jones. (eds), Handbook of Laser Technology and Applications, IOP Publishing, 2004.
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Th.G. Brown et al., The Optics Encyclopedia, Wiley-VCH, 2003.

M. Born and E. Wolf, Principles of Optics, 7th edn, Cambridge University Press, 1999. [Authoritative and

theoretical classic account of optics.]

E. Wolf (ed.), Progress in Optics, multi-volume series, Elsevier.

Chapter 2

G.A. Brooker, Modern Classical Optics, Oxford University Press, 2003. [Didactic approach to classical optical

phenomena and applications.]

P. Mouroulis and J. Macdonald, Geometrical Optics and Optical Design, Oxford University Press, 1997.

[Introductory treatment of geometrical optics leading to computer-aided design.]

M. Mansuripur, Classical Optics and its Applications, Cambridge University Press, 2002.

D. G. O’Shea, Elements of Modern Optical Design, John Wiley & Sons, 1985.

F. Roddier. Adaptive Optics in Astronomy, Cambridge University Press, 1999.
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beam width, 256, 383

cavity decay time, 392

excitation, 358, 364, 366, 368, 379, 380,

411, 412

focal spot, 384, 385

gain coefficient, 357, 358, 359, 368, 403, 404

growth rate, 355

mode-locking, 368

population inversion, 358

pumping, 350, 351

Q-switching, 379

resonators, 360, 388

laser cooling, 386

laser light, 371–390

bandwidth, 327, 361, 372

beam waist, 362, 363, 377

coherence, 375, 378

divergence, 362, 375

femtosecond pulses, 367

focusing, 384

modes, 302, 362, 376

monochromaticity, 378

pulse duration, 379, 382, 384, 411

radiance, 367, 371, 384

tuning, 367–368

laser types, 349, 351

carbon dioxide (CO2), 149, 364, 365, 384

chemical, 364

continuous wave, 359, 364, 406

excimer, 155, 364, 365, 368

fibre, 156, 366, 367

free electron, 421

gas, 364

helium-neon, 203, 352

iodine, 365

liquid, 368

mercury, 365

plasma, 364

quantum cascade, 406, 409

ruby, 354, 366, 367

solid state, 366

titanium-sapphire, 367

x-ray, 383

Leith, E. and Upatnieks, J., 336

lens,

anamorphic, 60

Barlow, 71, 81

bending, 23, 45, 52

fish-eye, 40, 468

Fresnel, 79, 80

magnifying, 21, 39, 62

power, 63

light emitting diode (LED), 395

coloured, 367

light pipe, 7, 135, 136

line broadening, 284, 298

line profile, 284, 290, 296, 298, 369,

378, 487–490

Gaussian, 378, 490

Lorentzian, 298, 489

Voigt, 490

(see also Gaussian lineshape,

Lorentzian lineshape, spectral lineshape)

Lippmann, G., 93

liquid crystal display (LCD), 169, 170, 177

Lockyer, Sir Norman, 281

Lorentzian lineshape, 285, 314, 403, 488

Lorentz-Lorenz equation, 443

lumen, 484

luminescence, 412, 430, 431

luminous efficiency, 412
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Mach-Zehnder, 160, 198, 209, 210, 216,

379, 411

modulator, 411

magnetic permeability, 116

magnification, 27–31

angular, 31, 62, 69, 71

transverse, 28, 63

Maiman, T.H., 14, 350

Malus’ law, 168

maser, 14, 350, 355

matrices, 32

matrix mechanics, 426

Maxwell, J.C., 2, 10

fish-eye lens, 40

perfect image, 42, 45

equations, 2, 116–118

Michelson, A.A., 205

Earth rotation, 215

interferometer, 198, 207, 209, 212, 223,

227, 297, 299

spectral interferometer, 197, 317

stellar interferometer, 221–225

Michelson-Morley experiment, 210–212

microchannel plate, 461

microscope, 64–68

condenser, 79

confocal scanning, 66

dark field, 326

magnification, 64, 65

near-field scanning, 67

objective, 41, 63–66

phase contrast, 307, 327

resolving power, 63, 65, 67, 324

Mie scattering, 438

missing orders, 266, 267

mode-locking, 368, 382

modulation, 14, 100–103

in fibres, 156

molecular spectral lines, 423

mutual coherence, 310, 319

myopia, 59

Newton, I.,

colours, 193, 198

Newton’s rings, 191

Newton’s equation, 30

Nicol prism, 172, 173

nodal points, 36, 38, 55, 58

noise, 375, 451, 452, 457–459

noise equivalent power, 459, 464

non-linear optics, 386

phase conjugation, 390, 391

second harmonic generation, 388, 389

sum and difference mixing, 390

numerical aperture, 65–67, 146, 150

opsin, 473

optical activity, 176, 181, 444

optical communications, 145, 156

optical mixing, 302, 303, 390

optical rectification, 388

optical resonator, 349, 360, 406

optical tweezers, 385, 393

parametric oscillator, 390

paraxial approximation, 25, 27, 33, 46, 49

Pauli.W., 427, 431

permittivity, 116, 118, 126, 443

phase conjugation, 390, 391

phase hologram, 337, 338, 341

phase matching, 389, 390, 393

phase switching, 318

phase velocity, 107, 139, 423

phasor, 84–87

phonon, 399

phosphorescence, 432

photoconductive gain, 453, 454

photoconductor, 396, 452, 453, 464

photoelectric effect, 2, 12, 449

photography, 461, 462

photoluminescence, 412, 430

photomultiplier tube, 450, 451, 461

photon, 3, 11–13, 15

momentum, 3, 126, 127, 385, 386, 445, 447

photon bunching, 314

photonic crystal slab (PCS), 149, 473

photoresist, 294, 337, 338

photosynthesis, 412, 474

Planck, M. 2

radiation formula, 129, 354

(see also blackbody radiation)

plane waves, crossing, see crossing waves

plane waves, crossing, 138, 268, 330, 331

plasma frequency, 112, 439

Pockels cell, 181, 380, 381, 382

Pockels effect, 181, 411, 443

point spread function, 103, 104

Poisson, S.D., 25

distribution, 323, 375

polarizability, 388, 438, 439, 441, 443,

445, 446

anisotropic, 388, 443

dielectric, 439, 443

free electrons, 439
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polarization, 10, 116, 127, 163–183

analysis, 174, 175

circular, 10, 127, 163–165, 171, 175–178,

182–184, 440

dielectric, 435, 438, 439, 443

elliptical, 164, 165, 167, 184

Jones vectors, 177, 179

prism, 1, 16, 19–22

minimum deviation, 20, 21

spectrometer, 285–292

wavefront analysis, 42

projector, 79, 80

propagation constant, 9

pseudoscopic image, 332

Q-switching, 379, 380, 381, 382

quantization, 129, 130, 424

quantum cascade laser, 406, 409

quantum efficiency, 322, 404,

semiconductor detectors 450–458,

human eye, 473

photoemission, 450

quantum mechanics

quantum well, 395, 404, 406, 409

quarter-wave plate, 167, 175, 176, 179

radiance, 317, 319, 384, 483

laser, 369, 371, 384

radiant flux, 77

radiation

Cerenkov, 422, 423

cyclotron, 415, 418, 419

free-free, 417, 418

from accelerated charge, 415

Hertzian dipole, 416, 417

polar diagram, 417

synchrotron, 415, 418–21

radiation pressure, 115, 126–128, 133, 386, 392

radiative exitance, 130, 482

radiative recombination, 402–405

radio antenna arrays, 271

radiometry, 13, 320, 481

rainbow, 17, 465, 466

rainbow hologram, 341–343

Raman, C. V.,

scattering, 435, 445–447

in fibres, 147

Ramsay, W., 281

Rayleigh, J.W.S.,

Rayleigh distance, 240, 241, 247, 257, 278, 363

Rayleigh-Jeans formula, 128, 129, 134

criterion, in diffraction, 240, 241, 247

criterion, in spectrometry 290

scattering, 415, 435, 437, 446, 447

in fibres, 147

redshift, 94

reflectance, 122

reflection coefficient, 120–126

refractive index, 10, 118, 206, 438, 485

free electrons, 439

glass, 50

near resonance, 442

o- and e-waves 171

region of coherence, 309

resolving power,

microscope, 67

telescope, 73

Rayleigh’s criterion, 290,

spectrometer, 270, 281, 290, 291–296

resonance, 435, 436, 441, 487

responsivity, 450, 452, 453

retarders, quarter- and half-wave, 158, 175,

178, 179

rhabdom, 469

rhodopsin, 472–474

Rowland gratings, 268, 269, 270, 294

ruby laser, 351, 366, 367, 369

SI units, 115, 119, 125, 482

scattered laser light, 291, 303

scattering processes: table, 447

Brillouin, 444

Compton, 126, 446

Mie, 438

Raman, 445, 446

Rayleigh, 147, 415, 437

Thomson, 415, 446

Schmidt telescope, 70, 461, 470

Schottky diode, 455

Schrodinger, E., 3

wave equation, 426

scintillation, 432

self-focusing, in laser beam, 383

Sellmeier equation, 442

Semiconductor, 395–412

detector, 452–456

diode, 399–401

direct and indirect gap, 398

doping, 399, 400

intrinsic and extrinsic, 399

laser, 401–410

n- and p-types, 399

voltage-current characteristic, 400, 401

wavelength ranges, 408
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spectral lineshape, 283, 299, 487

(see also line profile)

spectrometer, 281–305

crossed echelle, 272

etendue, 296

Fabry-Pérot, 294

Fourier transform, 296

grating, 288

heterodyne and homodyne, 302, 303

irradiance fluctuation, 299

overlapping orders, 272, 289, 295

photon counting, 299

prism, 285–288

resolving power, 270, 281, 290, 291–296

twin beam, 296, 299

spherical mirror, 26

spontaneous emission, 13, 14, 352–354

squeezed light, 375

standing waves, 89

Stefan’s law, 130

stigmatic image, 40, 43, 53

stimulated emission, 12–14, 349–357

Stokes, G.G., 430, 445, 446

parameters, 179, 180

radiation, 431

Talbot H.F., 279

TE and TM modes, 138, 139, 144

telephoto lens, 76

telescope, 68–77,

angular resolution, 73, 239, 240

astronomical, 68–73

catadioptic, 71

Galilean, 70, 73–76, 81

Gemini, 72

Herschel, 70

Keck, 72

magnification, 68, 70

Schmidt, 46

x-ray, 72

TEM wave, 119

temporal coherence, 307, 312, 376, 378

thermocouple, 462

Thomson, G., 2

scattering, 415, 446

total internal reflection, 7, 123, 136

transmission coefficient, 120–123,

transmittance, 122, 123

Tyndall, J., 135

uniaxial crystal, 171, 174, 390

valence band, 396–400

van Cittert-Zernike theorem, 314, 316, 317

velocity of light, 6, 10, 95, 97, 107, 119, 209, 210

Verdet constant, 181, 182, 440

vergence, 23–26

VCSEL laser, 407

vidicon, 460

visibility of fringes, 198, 224, 297–299, 313

VLBI interferometery, 225

V-number, in fibres, 152, 153

Voigt effect, 444

Voigt profile, 492

von Laue, M., 276

wave motion, 4, 7, 83–97

transverse, 96

electromagnetic, 10, 11, 115–132

wave equation, 8–10, 84, 117, 118, 137

wave group, 103, 106, 108, 308

Gaussian, 103, 308

wave mechanics, 3, 426

wave number, 9, 83

wave packets, 312, 313

waveguide, 137–141

cylindrical, 143–145,

dispersion, 149, 150, 152, 153

wavelength division multiplexing, 153

wave-particle duality, 15

waves, photons and rays 1, 3

Wiener-Khintchine theorem, 298, 318

Wien’s law, 130

wiggler, 421

Wollaston prism, 173

Wolter x-ray telescope, 72

work function, 449, 450, 452, 455

xanthophyll, 475

x-ray diffraction

grating 275

crystals, 276, 278, 332

phase reference, 345

Young, T., 2, 185

Young’s double slit, 15, 188–190, 218, 236

Zernike, F., 314, 316, 326

zone plate, 252, 257, 331, 332
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Plate 1 (a) Microphotography, using a confocal scanning microscope to scan and separate images at different
depths. This three-dimensional network of cell-to-cell connections in cultured canine epithelia was stained with
fluorescent dyes and scanned at 24 different focal depths. (b) Shown separately below are the individual sections,
which can be superimposed to show the network from any aspect (S. Bagley, Paterson Institute, Manchester)



Plate 2 Cutaway section of a modern compact digital camera. (Reproduced with permission from J. Odam,
‘‘Start with a Digital Camera’’, � Copyright 1999, Pearson Education Inc.)



Plate 3 LIGO, a gravitational wave detector in Louisiana, USA. This very large-scale optical interferometer (the
arms are 4 km long) is based on the Michelson principle, but using multiple beam reflections as in the Fabry–
Pérot interferometer (Bernard Schutz)



Plate 4 Aperture synthesis map of the radio emission at 20 cm wavelength from the galaxy M82. Radio
interferometers with spacings from ten to several thousand kilometres provided the Fourier components, which
were combined to produce this map. The prominent bright radio sources in this galaxy are supernova remnants;
the ring-shaped remnant (shown inset) is mapped with a resolution of 1 milliarcsecond (T. Muxlow, Jodrell Bank
Observatory)

Plate 5 Dark-field and phase-contrast microscopy. The objects in this photo are almost completely transparent,
but are made visible by refractive index differences that modify the phase of the light waves travelling through
them. The circular objects (diameter 0.3mm) are protozoa on a gill plate of the fresh water shrimp Gammamus
pulex (T. Allen, Paterson Institute, Manchester)



Plate 6 A high power fibre laser glowing with visible light. The core of the silica fibre, which is several metres
long and has resonator mirrors at each end, is doped with thulium ions which lase in the infra-red at 2 mm. The
pump is a semiconductor diode laser array, wavelength 790 nm, focused on one end. The laser power is 5 watts;
the visible light emitted from the side of the fibre is from a wavelength up-conversion process. (Stuart Jackson,
University of Manchester)

Plate 7 Double rainbow over Flagstaff, Arizona, photographed by W. Livingston (Color and Light in Nature,
Cambridge University Press, 1995). Note the darker sky outside the primary bow, and the fainter supernumerary
bow inside the primary



Plate 8 Aurora borealis photographed by Paul Neiman (Color and Light in Nature, Cambridge University Press,
1995)





Plate 9 Iridescent colour in a butterfly wing: (a) The Morpho butterfly; (b) Wing scales �300. The colour is due
to diffraction and selective reflection in the structure of the wing scales, shown by scanning electron microscopy
(SEM) and transmission electron microscopy (TEM); (c) the surface has a diffracting array of slots (SEM� 650);
(d) the slots are deep and contain serrations (SEM� 10000); (e) a cross-section of the slots shows a pattern of
grooves at quarter-wave intervals, which act in the same way as multilayer films (TEM� 15000) (Peter Vukusic,
University of Exeter with G. Wakely for TEM))



Physical Constants and Conversion Factors

Speed of light in vacuum c 2:998� 108 m s�1

Electric constant E0 8:854� 10�12 C2 N�1 m�2 (� farad/metre)

Magnetic constant m0 4p� 10�7 NA�2 (� henry/metre)

Newton’s constant of gravitation G 6:673� 10�11 m3 kg�1 s�2

Planck’s constant h 6:626� 10�34 J s ¼ 4:136� 10�15 eV s

Boltzmann’s constant k 1:381� 10�23 J K�1 ¼ 8:617� 10�5 eVK�1

Electronic charge e 1:602� 10�19 C

Mass of electron me 9:109� 10�31 kg ¼ 0:5110MeV=c2

Mass of proton mp 1:673� 10�27 kg ¼ 938:6MeV =c2

Avogadro’s number N0 6:022� 1023 mol�1

Stefan–Boltzmann constant s 5:670� 10�8 Wm�2 K�4

Compton wavelength of electron lc h=mec ¼ 2:426� 10�12 m

Electronvolt eV ¼ 1:602� 10�19 J ¼ hð2:418� 1014 HzÞ
¼ k ð1:160� 104 KÞ ¼ hc=ð1:240 mmÞ
¼ hcð8065 cm�1Þ ¼ ðe2=4pE0Þð6:944� 106 cm�1Þ

SI Prefixes

Factor Name Symbol

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

10�3 milli m

10�6 micro m
10�9 nano n

10�12 pico p

10�15 femto f

10�18 atto a

Micron ðmmÞ ¼ 10�6 m; nanometer ðnmÞ ¼ 10�9 m
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